
Copyright 2022, Dennis J. Frailey Software Quality and Testing 1

UT Dallas 

Software Quality and Software Testing

Part 1 – The Big Picture (How Quality 
Relates to Testing)

Part 2 –Achieving Software Quality
Part 3 - Defect Containment

Part 4 – Measuring Software Complexity



Copyright 2022, Dennis J. Frailey Software Quality and Testing 2

UT Dallas 

Software Quality and Software Testing

Part 1 – The Big Picture (How Quality 
Relates to Testing)

Part 2 –Achieving Software Quality
Part 3 - Defect Containment

Part 4 – Measuring Software Complexity



Copyright 2022, Dennis J. Frailey Software Quality and Testing 3

Dennis J. Frailey
Retired Principal Fellow - Raytheon Company

PhD Purdue, 1971, Computer Science
Assistant Professor, SMU, 1970-75
Associate Professor, SMU, 1975-77

(various titles), Texas Instruments, 1974-1997;
(various titles), Raytheon Co. 1997-2010

Adjunct Associate Professor, UT Austin, 1981-86
Adjunct Professor, SMU, 1987-2017

Adjunct Professor, UT Arlington, 2014-2020
-----

Areas of specialty: software development 
process, software project management, 

software quality engineering, software metrics, 
compiler design, operating system design, real-

time system design, computer architecture



Copyright 2022, Dennis J. Frailey Software Quality and Testing 4

A Recommended Book on Measurement

Some of the material covered 
today is taken from this book.

Although not a book on testing, 
it is a very good book on 

measurement and addresses 
several aspects of testing.

Software Metrics – A Rigorous and Practical Approach
By Norman Fenton and James Bieman



Copyright 2022, Dennis J. Frailey Software Quality and Testing 5

More Recommended References

SWX – The Software Extension to the Project 
Management Body of Knowledge, available from PMI 
(www.pmi.com) and the IEEE Computer Society 
(www.computer.org).

– This is a general reference that may be important if you want 
to apply some of today’s techniques in project management.

SWEBOK – The Guide to the Software Engineering Body 
of Knowledge, available from the IEEE Computer Society 
and also at www.swebok.org

– This is another general reference that gives an overall picture 
of software engineering knowledge and summarizes topics that 
any software engineer should know about. 

http://www.pmi.com/
http://www.computer.org/
http://www.swebok.org/


Copyright 2022, Dennis J. Frailey Software Quality and Testing 6

Part 1

The Big Picture

How Quality Relates to Testing
and

Other Aspects of Software Engineering



Copyright 2022, Dennis J. Frailey Software Quality and Testing 7

Part 1 - Outline

The Scope of Software Quality
 Defining Quality
 Observations on the Testing Process



Copyright 2022, Dennis J. Frailey Software Quality and Testing 8

My Story

How I Learned the Importance of Software 
Quality and Reliability



Copyright 2022, Dennis J. Frailey Software Quality and Testing 9

My First Really Big and Difficult Computing Problem 

Marine Seismic Exploration



Copyright 2022, Dennis J. Frailey Software Quality and Testing 10

Characteristics of the Situation
 About a dozen “ships” around the world, searching for oil

– 26’ ships – many sailors would call these “boats”, not “ships”

 1970’s-vintage minicomputer
– Less memory and computing power than a modern smart phone

 The computer must:
– Navigate the ship so you know where you are

 There was no GPS - but did have satellite signals twice a day
– Collect and record the seismic data

 Massive amounts of data
– Do cursory analysis of the data 

 Each ship only comes to port once every 3 months or so
– Helicopters bring supplies about once a month

 It costs several million dollars a day to operate each ship



Copyright 2022, Dennis J. Frailey Software Quality and Testing 11

Pinterest.com

Consequences of a Software Failure
Phase 1 – Getting to the Ship

 Problem is described via satellite phone 
to central facility

 If no quick fix is found, the responsible 
programmer is identified

 The responsible programmer is flown to 
the nearest port

 Then flown to the ship via helicopter

Content.time.com

Verticalmag.com



Copyright 2022, Dennis J. Frailey Software Quality and Testing 12

Consequences of a Software Failure
Phase 2 – On the Ship

 The programmer is seasick

for a day or two

 The programmer fixes the problem

Sailingscuttlebut.com

Science.museum.com



Copyright 2022, Dennis J. Frailey Software Quality and Testing 13

Consequences of a Software Failure
Phase 3 – Getting Off the Ship

 The programmer stays on the 
ship until it next comes to port
– It would cost too much to send them 

back by helicopter

– Occasionally a supply helicopter will 
have room for an extra passenger

– Sometimes the captain will let you off 
on a nearby shore

Gettyimages.com 



Copyright 2022, Dennis J. Frailey Software Quality and Testing 14

In Other Words

The Programmer is Very 
Strongly Motivated to have 
Highly Reliable Software

Copyright Getty Images
Istockphoto.com



Copyright 2022, Dennis J. Frailey Software Quality and Testing 15

Real Projects for Real Customers

Most Interesting Projects are Big, Complex and 
Challenging



Copyright 2022, Dennis J. Frailey Software Quality and Testing 16

Projects are Often Big & Complex



Copyright 2022, Dennis J. Frailey Software Quality and Testing 17

Characteristics of Big Projects

 Lots of People – hundreds or 
even thousands

 Millions of lines of code

 Many different companies may 
be involved

 Multiple locations

 Many different disciplines
• Systems engineers
• Quality engineers
• Mechanical engineers
• Software engineers
• Electrical engineers

• Safety engineers
• Logistics engineers
• Financial experts
• Project managers
• Subcontract managers
• …



Copyright 2022, Dennis J. Frailey Software Quality and Testing 18

Many Organizations Claim to Develop High 
Quality, Reliable Software

 But how many of them have defined what they mean by 
“High Quality”?

 How many of them can measure the quality of their 
software?

 How many of them can evaluate whether their software has 
achieved “High Quality”?

 How many of them know how to engineer high quality into 
their software?



Copyright 2022, Dennis J. Frailey Software Quality and Testing 19

What Do We Mean When We Talk About  
“High Quality Software”?

 Satisfies requirements
 Works correctly
 Does what I want it to do
 Does no harm
 Reliable – I can depend on it
 Easy to use
 Portable
 Easy to update and maintain
 Easy to test
 Runs efficiently / fast
 Consistent
 …

Can we test for 
these 

characteristics?

Can we 
measure 
them?

Do we know how to 
achieve these 

characteristics?



Copyright 2022, Dennis J. Frailey Software Quality and Testing 20

Measurement is Often Involved in 
How We Test or Evaluate Software
Requirement

 Software must handle up 
to 10 transactions per 
minute

How we might Test it
 Measure how many transactions 

it processes per minute

 Software must be 
reliable

 Software must be easy to 
use

 Software must be easy to 
test

 Count the faults during 
operation?

 Count something during 
development?

 Have 25 people use the software 
and rate how easy it is to use

 Run standard test procedures 
and measure how long it takes or 
how well the defects are found



Copyright 2022, Dennis J. Frailey Software Quality and Testing 21

But What Are We Testing or Evaluating?
What is “Desired Behavior”?

 Satisfies requirements
 Works correctly
 Does what I want it to do
 Does no harm
 Reliable – I can depend on it
 Easy to use
 Portable
 Easy to update and maintain
 Easy to test
 Runs efficiently / fast
 Consistent
 …

These are all 
characteristics of 
Software Quality

Testing is one way to 
assess software quality.

And measurement is 
often part of testing.

There are many known 
methods of achieving these.

And much in common



Copyright 2022, Dennis J. Frailey Software Quality and Testing 22

Test and Evaluation

Evaluation: Appraising a product through one of the 
following:
– Examination, analysis, demonstration
– Testing
– or other means

Testing: Exercising a system to improve confidence 
that it satisfies requirements or to identify 
variations between desired and actual behavior.

“Evaluation” is the broader term.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 23

Downloadable at: 
www.swebok.org



Copyright 2022, Dennis J. Frailey Software Quality and Testing 24

SWEBOK Facts

 3 Editions have been produced since 1998
 2 Editors: Pierre Bourque and Richard Fairley
 8 Contributing and Co-Editors 
 15 Knowledge Areas, each with its own Editors

– Each aligned with related ISO and IEEE standards 

 9-person Change Control Board
 Over 300 reviewers (chosen due to their expertise in 

various aspects of software engineering)
– Over 1500 comments received and adjudicated on various drafts (3rd

edition)

 36 Items in Consolidated Reference List



Copyright 2022, Dennis J. Frailey Software Quality and Testing 25

The 15 SWEBOK Knowledge Areas

Software Requirements
Software Design
Software Construction
Software Testing
Software Maintenance
Software Configuration 

Management
Software Engineering 

Management
Software Engineering 

Process  

Software Engineering Models 
and Methods

Software Quality
Software Engineering 
Professional Practice

Software Engineering 
Economics

Computing Foundations
Mathematical Foundations
Engineering Foundations



Copyright 2022, Dennis J. Frailey Software Quality and Testing 26

Software Requirements



Copyright 2022, Dennis J. Frailey Software Quality and Testing 27

Software Design



Copyright 2022, Dennis J. Frailey Software Quality and Testing 28

Software Construction



Copyright 2022, Dennis J. Frailey Software Quality and Testing 29

Software Testing



Copyright 2022, Dennis J. Frailey Software Quality and Testing 30

Software Configuration Management



Copyright 2022, Dennis J. Frailey Software Quality and Testing 31

Software Engineering Management



Copyright 2022, Dennis J. Frailey Software Quality and Testing 32

Software Quality



Copyright 2022, Dennis J. Frailey Software Quality and Testing 33

Part 1 - Outline

 The Scope of Software Quality

Defining Quality
 Observations on the Testing Process



Copyright 2022, Dennis J. Frailey Software Quality and Testing 34

What Do We Mean by 
Quality?



Copyright 2022, Dennis J. Frailey Software Quality and Testing 35

Concepts of Quality for Products

“Quality is conformance to requirements”
Crosby

“Quality is fitness for intended use”
Juran

“Quality is value to someone”
Weinberg



Copyright 2022, Dennis J. Frailey Software Quality and Testing 36

“Quality is
Conformance to Requirements”
 If testable requirements can be established, then it is 

possible to decide whether the product satisfies the 
requirements – by testing it.

 If measurable quality characteristics can be established, 
then it is possible to decide on the extent to which the 
product satisfies the requirements – by measuring it.

 Thus you can avoid disputes and have workable 
contractual relationships

However …



Copyright 2022, Dennis J. Frailey Software Quality and Testing 37

Issues with 
“Conformance to Requirements” (1 of 5)

Who establishes the requirements?

– Sponsor - The one who pays for the product

– End User - The one who will use the product

– Sales or Marketing - The one who will sell the product

– Engineering - The ones who will design and build it

Planetgeek.ch

What the 
end user 

wants

What the 
engineer 

builds



Copyright 2022, Dennis J. Frailey Software Quality and Testing 38

Issues with
“Conformance to Requirements” (2 of 5)

Are the requirements right?
– consistent

– complete

– visible

– correct

 Who determines whether the 
requirements are right?

 What if you discover a problem later on?

Slideshare.net

Quora.com



Copyright 2022, Dennis J. Frailey Software Quality and Testing 39

Issues with
“Conformance to Requirements” (3 of 5)

Is it even possible to define the requirements in a 
measurable and testable way?

– Requirement: software must be reliable

– What does this actually mean?

 Doesn’t fail very often? --- How often is too often?

 Failures do not cause severe problems?

 I know it when I see it?

 …



Copyright 2022, Dennis J. Frailey Software Quality and Testing 40

Issues with
“Conformance to Requirements” (4 of 5)

What about implicit vs. explicit requirements?

– Explicit requirement: pizza should be hot and flavorful

– Implicit requirements: 

 comes sliced in reasonably sized pieces

 not harmful

 fits in the pizza box

 …



Copyright 2022, Dennis J. Frailey Software Quality and Testing 41

Issues with
“Conformance to Requirements” (5 of 5)

What about when requirements change during the 
development process?

– Who makes the changes?

– Who controls and authorizes the changes?

– Who pays for the consequences of changes?



Copyright 2022, Dennis J. Frailey Software Quality and Testing 42

“Quality is 
Fitness for Intended Use”

 This definition is based on a fundamental 
concept of law - that a product should be 
suitable for the use that it is intended for.

 This definition accommodates the fact that 
we may not be able to fully define the 
requirements.

However …



Copyright 2022, Dennis J. Frailey Software Quality and Testing 43

Issues with
“Fitness for Intended Use” (1 of 4)

–Consider a TV set 

 which fitness characteristics are not 
understood by

–Typical User
–Engineer
–Sales Personnel

Konga.com

Who defines fitness?



Copyright 2022, Dennis J. Frailey Software Quality and Testing 44

Issues with
“Fitness for Intended Use” (2 of 4)

–Consider a software program

 which fitness characteristics are not 
understood by 

–The typical software developer?
–The inexperienced end user?
–The experienced end user?

Gemtree.com

Who defines software fitness?



Copyright 2022, Dennis J. Frailey Software Quality and Testing 45

Issues with
“Fitness for Intended Use” (3 of 4)

Different users have different definitions of fitness

– Ease of use for novices 

– Control of fine details for experts

– Ease of maintenance for support staff

– Able to survive power failures

– Compatibility with previous system

 Uses change as users grow in experience
– Too many “ease of use” and “automatic” features may 

frustrate an expert

Theodysseyonline.com



Copyright 2022, Dennis J. Frailey Software Quality and Testing 46

Issues with
“Fitness for Intended Use” (4 of 4)

The “pleasant surprise” concept
User gets more than he or she expected

There is often tension between the engineer 
knowing better than the customer and the 
customer knowing better than the engineer

They really knew what they 
were doing when they 
designed this software



Copyright 2022, Dennis J. Frailey Software Quality and Testing 47

“Quality is
Value to Someone”

 This definition incorporates the idea that quality 
is relative

 And it places increased emphasis on 
understanding what quality means to the 
intended user of the software

However …



Copyright 2022, Dennis J. Frailey Software Quality and Testing 48

Issues with “Value to Someone” (1 of 4)

Whose opinion counts?

You may need to weigh different opinions

How is the 
financial software?

I want hot 
games

What 
features do 
you want?

Does it have 
Facebook and 

Twitter?

Can it survive 
spilled drinks?



Copyright 2022, Dennis J. Frailey Software Quality and Testing 49

Issues with “Value to Someone” (2 of 4)

Logic vs Emotion
– “Glitz” v. “Substance”

Which Car 
is Best for 

Our Family?



Copyright 2022, Dennis J. Frailey Software Quality and Testing 50

Issues with “Value to Someone” (3 of 4)

Value depends on What Features are Most Important
– Space Shuttle

 0 defects
 Reliability

– Video Game
 Good user interface
 High performance

– School Laptop
 Rugged
 Fast
 Good Battery Life
 Good Software



Copyright 2022, Dennis J. Frailey Software Quality and Testing 51

Issues with “Value to Someone” (4 of 4)

Explicit
 I need an office
 It must have a computer
 And lots of space

Implicit
 I need a desk
 And a chair
 And convenient electrical outlets

Some Needs are Implicit (unstated)



Copyright 2022, Dennis J. Frailey Software Quality and Testing 52

Definitions of Software Quality

IEEE: The degree to which the software possesses a 
desired combination of attributes

Crosby: The degree to which a customer perceives
that software meets composite expectations

Note that both definitions imply 
multiple expectations



Copyright 2022, Dennis J. Frailey Software Quality and Testing 53

Summary of Quality Definition Issues

 You Must Define Quality
– Before you can engineer it into your product
– … and before you can measure it
– … or test whether the product has the desired quality attributes

 Quality has Multiple Elements
– It reflects a multitude of expectations

 Quality is Relative
– Quality is in the eye of the customer

 Quality encompasses fitness, value, and other attributes 



Copyright 2022, Dennis J. Frailey Software Quality and Testing 54

Part 1 - Outline

 The Scope of Software Quality
 Defining Quality

Observations on the Testing 
Process



Copyright 2022, Dennis J. Frailey Software Quality and Testing 55

Test and Evaluation

Evaluation: Appraising a product through one of the 
following:
– Examination, analysis, demonstration
– Testing
– or other means

Testing: Exercising a system to improve confidence 
that it satisfies requirements or to identify 
variations between desired and actual behavior.

“Evaluation” is the broader term.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 56

Testability
A product is testable if:

– It can be tested in a reasonable way (readily testable)

– The tests are well defined, comprehensive, and not overly redundant

– Each test can be directly traced to and from: 
 product requirements, 
 derived requirements resulting from design decisions, or 
 design or coding elements calling for specific testing

– Each test failure can be directly traced to: 
 a requirement that is not being met, or
 A design element that was not properly implemented, or
 A portion of the code that has a programming error

Good testing starts with testable 
requirements and designs.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 57

Testing is unsuitable when ...

 It would destroy the product

 It is too dangerous

 It is too costly

 It cannot reasonably be expected to provide 
confidence that requirements are satisfied

 It cannot be done



Copyright 2022, Dennis J. Frailey Software Quality and Testing 58

Evaluation Techniques 
(other than testing)

 Examination 
– For example, reading designs or code or other 

documents to check for errors

 Demonstration
– e.g. flying an airplane to show that it can fly
– e.g. running a program to show that it works

 Other techniques (examples)
– providing a formal proof that a program is correct
– showing through statistical analysis that the 

probability of a defect is below a threshold



Copyright 2022, Dennis J. Frailey Software Quality and Testing 59

The Steps Involved in a
Good Testing Process

 Preparation

 Test Execution

 Repair of defects (debugging)



Copyright 2022, Dennis J. Frailey Software Quality and Testing 60

Test Preparation Activities
 Making sure that requirements are testable
 Making sure that designs are testable
 Developing test plans
 Developing test cases
 Writing testable code
 Writing test code (or programming test machines)
 Devising procedures for testing, inspecting and 

reviewing of results

These activities begin as requirements are being defined, and 
continue throughout the development process



Copyright 2022, Dennis J. Frailey Software Quality and Testing 61

Reasons why Requirements/Designs
May be Hard to Test

 Requirements may not be well understood

 Requirements may not be well documented

 What seems obvious to the customer or the system 
designer may not seem clear or obvious to the software 
developer or tester
– Different kinds of knowledge

– Unstated assumptions

 The customer and the software developer may not agree on 
what constitutes an acceptable test

 Changes made during software development may not be 
communicated to the software team



Copyright 2022, Dennis J. Frailey Software Quality and Testing 62

Suggestions (slide 1 of 3)

 A requirement or design feature is not complete until 
you have reached agreement on how it is to be tested
– For each requirement, reach agreement between the software 

team and the customer or system engineer on how the 
requirement is to be tested

– For each design feature, reach agreement between the software 
designer and the software test team on how the design feature is 
to be tested

www.cigniti.com



Copyright 2022, Dennis J. Frailey Software Quality and Testing 63

Suggestions (slide 2 of 3)

 Control changes to requirements and design
– Don’t allow a requirements or design change without a clear 

understanding of the effect of the change on the software cost, 
schedule and technical development

– For each change to requirements or design, indicate how the 
corresponding tests must be changed.

Researchgate.net



Copyright 2022, Dennis J. Frailey Software Quality and Testing 64

Suggestions (slide 3 of 3)

 Keep track of which tests correspond to which 
requirements or design elements (traceability)

Ideal
Requirement 1                                Test 1
Requirement 2                                Test 2
Requirement 3                                Test 3

Acceptable
Requirement 1
Requirement 2                                               Test A
Requirement 3



Copyright 2022, Dennis J. Frailey Software Quality and Testing 65

Less Desirable
Test 1

Requirement A                                              Test 2
Test 3

Undesirable
Requirement 1                                           Test A
Requirement 2                                           Test B
Requirement 3                                           Test C

Other Traceability Options



Copyright 2022, Dennis J. Frailey Software Quality and Testing 66

Reasons Why Code May Be Difficult to Test

 Code is not well structured
– Needlessly complex
– Poorly organized

 Code elements do not trace directly to requirements or 
design elements
– So when the code causes a failure, it is hard to determine whether 

the problem is with the code or the design or the requirement

 Code is not well documented or does not follow coding 
conventions
– Hard to understand
– Error prone

We will address this in 
part 4



Copyright 2022, Dennis J. Frailey Software Quality and Testing 67

Sample Outline of a Test Plan
 Summary of Major Testing and/or Integration Steps
 For each test and/or integration step:

– Purpose / goal of the step
– What equipment is needed and what configurations must be set up
– What hardware elements will be integrated/tested at this step
– What software components will be integrated/tested at this step
– Test cases to be performed (in order, if order is important)

For each test case:
– what requirements will be tested and/or purpose of the test
– what procedures should be followed
– what results are expected

Ideally, this is started at the beginning of a project, with 
details filled in and revisions made as the project progresses



Copyright 2022, Dennis J. Frailey Software Quality and Testing 68

Sample List of Test Cases
Test 
Case 

ID 

Test Case 
Name 

Summary Expected Results 

S2R1 Get GPS Data Pull the GPS data from the processing unit The data should match the values given by the GPS receiver.  
OR, if a GPS receiver is not available, then the data should 
match the canned data provided for testing purposes. 

S2R2 Get Radar Data – Raw A/D Samples 
(reduced range swath) 

Pull the radar data from the processor.  Format 
expected is the raw A/D samples 

The data should match the values given by the processor. 
(Details TBD.) 

S2R3 Get Radar Data – Decimated A/D 
Samples (full range swath) 

Pull the radar data from the processor.  Format 
expected is the decimated A/D samples. 

The data should match the values given by the processor. 
(Details TBD.) 

S2R4 Get Radar Data – Pulse Compressed 
Data 

Pull the radar data from the processor.  Format 
expected is the pulse compressed data. 

The data should match the values given by the processor. 
(Details TBD.) 

S2R5 Get Radar Data – CPI Range-Doppler 
Maps 

Pull the radar data from the processor.  Format 
expected is the CPI Range-Doppler maps. 

The data should match the values given by the processor. 
(Details TBD.) 

S2R6 Get Radar Data – Post NCI Range-
Doppler Maps 

Pull the radar data from the processor. Format 
expected is the Post NCI Range-Doppler Maps. 

The data should match the values given by the processor (Details 
TBD). 

S2R7 Get Radar Data – Exceedence Regions Pull the radar data from the processor. Format 
expected is the exceedence regions. 

The data should match the values given by the processor (Details 
TBD). 

S2R8 Get System Health Information Pull the radar data from the processor.  This can be 
a dummy dwell, but we need to check the header 
information to ensure the system health status is 
working. 

System Health information 

 



Copyright 2022, Dennis J. Frailey Software Quality and Testing 69

Test Execution Activities

 Conducting tests
 Conducting reviews of test results
 Conducting inspections of procedures or code

These are the steps where actual testing is performed.

Loginworks.com



Copyright 2022, Dennis J. Frailey Software Quality and Testing 70

Repair Activities

 Debugging (finding the cause of each test 
failure)

 Correcting errors
 Re-running tests, inspections, etc.

These can be very expensive activities if 
testing is not planned and performed well.

Re-running of tests can add significant 
cost and time to a project

Dselva.co.in

Failure to re-run tests is a major source of software problems



Copyright 2022, Dennis J. Frailey Software Quality and Testing 71

Measuring the Progress of a 
Testing Activity



Copyright 2022, Dennis J. Frailey Software Quality and Testing 72

Testing Requires Resources

Resources are entities required in order to perform software 
processes and produce software products

– People
– Computers
– Software
– Networks
– Time
– …

Resources usually cost money
 We want to use them efficiently –

not waste them. 
 And we want them to be available! 



Copyright 2022, Dennis J. Frailey Software Quality and Testing 73

Some of the Things We Wish to Know About 
Testing Resources

 Are they available as required?
– Staffing levels / employee turnover rates
– Training (frequency, suitability)
– Equipment and software availability
– Network bandwidth

 Are they performing as desired?
– Are testing facilities and tools working well?
– Is the training effective?

 Are the resources being used efficiently?
– Are we on schedule? Will the project be on time?
– Are we over or under our budget?
– What is our productivity?

www.chandoo.org



Copyright 2022, Dennis J. Frailey Software Quality and Testing 74

Resource Measures are Important for
Managing a Project

 They tend to be focused on costs and schedules 
relative to plans or deadlines

 For example many projects use a work 
breakdown structure to measure project 
progress

 Other examples of resource measures that tell 
us about project status
– Earned value / Burndown Charts
– PERT and GANTT charts (project status and plans)
– Employee or network workload measures
– Employee or equipment availability measures

Tutorialspoint.com



Copyright 2022, Dennis J. Frailey Software Quality and Testing 75

Resource Measures Often Measure People

 This can lead to problems if people are not measured 
fairly
– People are very sensitive to fairness of measurements

 Productivity of people is an especially problematic thing 
to measure
– The person doing the hardest job or the most thorough job 

tends to look like they are making the least progress

 Even measuring things like defects can be misleading 
when applied to people
– The person developing the most complex part of the software 

tends to have more errors, especially if rushed to meet deadlines.
– The person testing the most difficult part of the software tends to 

discover the most defects and to take the most time



Copyright 2022, Dennis J. Frailey Software Quality and Testing 76

Measure Processes, Not People

 It is important to measure things that affect 
productivity of people, such as:
– Training – is it accomplishing what we want it to accomplish?
– Turnover (planned and unplanned)
– Resource utilization
– Resource availability
– Staffing level
– Effectiveness and usability of processes and procedures

 People will usually cooperate if you try to make their 
jobs more efficient
 But they will resist if you find ways to blame them



Copyright 2022, Dennis J. Frailey Software Quality and Testing 77

Units Tested

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13

Week 

Tested

Plan
Actual
Makeup Plan
Projection

Resource Measures
Testing Progress

Today Deadline

Measuring testing progress helps us predict schedule.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 78

The Metric Should Not Be the Goal!

Suppose your goals are
– Good (effective) testing
– Efficient testing

Good uses for a testing progress metric:
– Identify problems in testing and use the information to find 

and fix the underlying problems
 Perhaps the test code isn’t very good
 Or perhaps there are equipment problems
 Or perhaps you incorrectly estimated the difficulty of testing 

your software product
Potentially bad uses for a testing progress metric:

– Criticizing people for not meeting the deadline
– Rewards for the most tests done per week



Copyright 2022, Dennis J. Frailey Software Quality and Testing 79

Using Testing Progress Metrics Improperly
Wrong Performance Goals

 Real goal: good, efficient testing

 Performance goal for testing team: 
– more tests complete per week

 Potential consequences:
– Team makes tests simpler (and less effective) so they can 

get more tests done per week
– Team focuses on testing quickly instead of testing 

thoroughly and effectively
– Team creates smaller test cases rather than what makes sense

Time is wasted improving the numbers 
instead of improving the testing



Copyright 2022, Dennis J. Frailey Software Quality and Testing 80

Using Testing Progress Metrics Improperly
Measuring Individual Performance

If you measure testing progress for individuals you 
might encourage people to …

– Run the easiest and least effective tests in order to get 
more tests complete per week

– Cut corners (skip parts of the testing process) when doing 
testing in order to get more tests done each week

– Use tools in ways that mask inefficiency
 Making it appear they have done more than they actually have

– Test only the least complex parts of the software

And you might reward the wrong people – the ones who run the most 
tests, not the ones who do the most effective testing.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 81

Using Testing Progress Metrics Properly

 Use the Test Progress metric as an indicator of your 
true situation
– If there’s a problem, fix the problem
– Don’t 

 pretend it isn’t there
 encourage people to cover it up
 blame people

 Focus on the test processes and procedures
– Are your tests being developed properly?
– Are your tests being run properly?
– Are you properly estimating the time required for testing?

 Enlist the aid of the software team to analyze the 
problems and make improvements

Dr-karma.com



Copyright 2022, Dennis J. Frailey Software Quality and Testing 82

Seeding and Tagging
A simple and effective way to 

assess Testing Progress



Copyright 2022, Dennis J. Frailey Software Quality and Testing 83

Seeding and Tagging

Purpose: To help you estimate how many undetected 
errors (defects) are in your code

When to do this: During test planning and during the 
testing process

Suppose: You have been testing your code and have 
discovered D1 errors (defects).

Question: How many errors are left?

Technique: Seeding and Tagging

Concept: Introduce extra errors and see how many of 
them your test process has found.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 84

Overview

1. Inject extra errors
before testing starts

2. See how many of those errors you find during 
the normal testing process



Copyright 2022, Dennis J. Frailey Software Quality and Testing 85

Seeding and Tagging Details

 Introduce a given number of extra errors into the 
software -- say E of them

 Run standard tests, detecting D2 of them

 Compute D2/E = % of errors detected

 Suppose D1 = number of genuine errors 
already detected

 Then you assume the total number of errors in the 
software is

D1*E/D2



Copyright 2022, Dennis J. Frailey Software Quality and Testing 86

Example of Seeding and Tagging

 200 defects found so far

 You have injected 20 extra defects

 You have found 12 of these extra defects

 Therefore, assume total defects =
200 * 20 / 12 = 4000 / 12 = 333 total defects

=> 333 - 200 = 133 defects remaining

By performing this analysis from time to time, 
you can estimate your defect density and your 

testing progress over time.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 87

UT Dallas 

Software Quality and Software Testing

Part 1 – The Big Picture (How Quality 
Relates to Testing)

Part 2 – Achieving Software Quality
Part 3 - Defect Containment

Part 4 – Measuring Software Complexity



Copyright 2022, Dennis J. Frailey Software Quality and Testing 88

Part 2 - Outline

Introduction
 Six Sigma Overview
 Value Added Analysis Overview
 Cost of Quality Analysis Overview



Copyright 2022, Dennis J. Frailey Software Quality and Testing 89

Quality Emcompasses Many Characteristics



Copyright 2022, Dennis J. Frailey Software Quality and Testing 90

There are Many Well Established Techniques 
for Defining, Improving, Measuring, Testing, 

Predicting and Managing Quality

Quality 
Engineering Defect ContainmentCausal Models



Copyright 2022, Dennis J. Frailey Software Quality and Testing 91

The Good News

Most techniques for improving quality apply to 
multiple quality characteristics

 For example, reducing rework tends to 
 Reduce defects, 
 Improve reliability, 
 Reduce development costs, 
 Reduce likelihood of doing harm, 
 Reduce maintenance costs, and 
 Improve customer satistaction.

 Defect containment also enables you to
 Predict reliability, warranty cost, etc.
 Identify the process steps that produce the worst defects
 Identify development practices that help or hurt reliability and quality 

A truly effective 
reliability program 

should be 
integrated with a 

truly 
comprehensive 

quality engineering 
program.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 92

The Bad News

Failure to apply a comprehensive quality 
improvement approach may result in quality 

problems, even in “perfect” software.
A “perfect” software product may have these 

quality problems:
 The customer doesn’t like it
 Hard to use
 Not compatible with other software or systems
 Difficult to maintain
 Satisfies requirements but doesn’t actually solve the 
customer’s problem very effectively
 …



Copyright 2022, Dennis J. Frailey Software Quality and Testing 93

Example from IBM1

 Approximately one out of three defects will only 
cause a user failure once in 500 years.

 A very small portion of defects (<2%) cause the 
most important user failures

Number of defects may not be strongly 
correlated to the frequency or severity 

of end user failures.

1 See Adams in reference list.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 94

 What is needed for some products is often
not needed for others

– You need to know what the customer requires

 Those doing the work must believe the goal is realistic
– Otherwise, they see it as pushing them to perform beyond their 

capacity for marginal benefit

 Many of the problems have to do with management 
decisions or corporate culture
– You can’t expect technical experts to solve the problems alone 

– they need support and commitments

Issues on Real Projects That Have 
Resulted in More Comprehensive 
Quality Engineering Approaches



Copyright 2022, Dennis J. Frailey Software Quality and Testing 95

How Good Do You Have to Be?

How Many Products or Services Must Be Defect Free? 

 99%
– This would mean 1 error per 100 course slides which is probably 

fairly typical
– But --- 200,000 wrong drug prescriptions per year - very bad

 99.9%
– 1 spelling error per page in a book or student paper – fairly good
– But 500 surgical errors per week – not acceptable

 99.99%
– 2000 mail delivery errors per hour

In other words, it depends on the product or service!



Copyright 2022, Dennis J. Frailey Software Quality and Testing 96

What About Variance?

Average product vs worst case product
Which product is better?

Product Average Worst Case
A 2 defects 45 defects
B 3 defects 7 defects

Many methods of improving quality and reliability 
focus on average rather than worst case scenarios.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 97

Other Limitations of
Many Quality Improvement Programs

 No insight into the nature of the problems?
– We may measure or predict failure rates but learn little about the 

causes of the failures or how to cure them

 Little consensus on what to do
– Although different quality and reliability experts have recommended 

ways to improve
 they may not be aligned or compatible

 there is usually no overall conceptual framework or comprehensive 
theoretical model

 How do you justify the costs?
– How do you balance costs and benefits



Copyright 2022, Dennis J. Frailey Software Quality and Testing 98

Part 2 - Outline

 Introduction

Six Sigma Overview
 Value Added Analysis Overview
 Cost of Quality Analysis Overview



Copyright 2022, Dennis J. Frailey Software Quality and Testing 99

Six Sigma Origins
Six Sigma is a comprehensive and integrated set of tools 
and techniques introduced by Motorola Corporation in the 

mid-1980’s
 Goal:

– Improve quality

 Methods: 
– Integrate many different methods
– Define a uniform way of measuring quality
– Remove the causes of defects, and
– Minimize variability in product development and business 

processes

Six sigma incorporates the best ideas of Juran, Deming, Crosby 
and other quality experts into a comprehensive approach.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 100

Six Sigma is a Comprehensive Program

 Six Sigma requires commitment from the entire 
organization, especially top management
– Management must be willing to change culture and 

processes to achieve higher quality
– Management must support the effort, even when it means 

missing deadlines or raising development cost

 Six Sigma focuses on measurement and analysis of 
process characteristics that impact quality
– Reliance on verifiable data rather than assumptions and 

guesswork

 Six Sigma reduces process variation in order to 
achieve stable and predictable results



Copyright 2022, Dennis J. Frailey Software Quality and Testing 101

The Origin of the Term “Six Sigma”

It refers to the normal distribution curve
and the standard deviation (a measure of variance)

Six sigma attempts to 
provide a quality 

improvement approach that 
is achievable and where 

you can have a good 
sense of how much you 

have achieved.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 102

Six Sigma Principles

Product Quality Depends on Three Things
1) The design of the product

2) The materials used to construct it

3) The process used to produce it
– Is it a good process?
– Do we follow the process correctly?

1) Design

2) Materials

3) Production
Process

(Outputs)(Inputs)

Products

Floorbroker.com



Copyright 2022, Dennis J. Frailey Software Quality and Testing 103

Six Sigma Principles

To Improve Quality You Must Address 
All Three Factors

1) Design 
2) Materials

3) Production
Process

(Outputs)(Inputs)

Products

Improve the 
Design

Improve the 
Materials

Improve the 
Process

Make sure we follow 
the Process properly



Copyright 2022, Dennis J. Frailey Software Quality and Testing 104

Six Sigma Principles 

Some Key Elements of 
Six Sigma Programs

 You use a process to produce something

 The process can vary as well as the product
– So you must measure and control process variance

 Average number of defects is not an acceptable 
measure . . .
– You need to understand the worst case and why it happens
– You need to measure and control the worst case (not 

just the average number of defects)
– You also need to control variations from day to day, 

resulting from incidental factors that are often ignored



Copyright 2022, Dennis J. Frailey Software Quality and Testing 105

Applying to Software

 Software development produces what is essentially a 
design!
– “Manufacturing” of software is a relatively small contributor to 

quality or reliability problems

 So the three factors become:
– Inputs:

1) The architecture of the system, of which software is a part
 And also the architecture of the software

2) The requirements of the software

– Process:
3) The software development process



Copyright 2022, Dennis J. Frailey Software Quality and Testing 106

Software Quality Depends on:

1) The architecture of the system or product

2) The requirements of the software 

3) The process used to develop the software
– Is it a good process?

– Do we follow it correctly?

3) Development
Process1) Architecture 

2) Requirements

(Outputs)(Inputs)

Software



Copyright 2022, Dennis J. Frailey Software Quality and Testing 107

Achieving 6 Sigma Quality
(for a manufactured product)

1) Design the product for quality and producibility
– this includes improving the design process

2) Improve the quality of the materials
3) Design the production process to produce 

quality products
– And follow that process correctly

1) Design 
3) Production

Process
(Outputs)(Inputs)

Products
2) Materials



Copyright 2022, Dennis J. Frailey Software Quality and Testing 108

Achieving 6 Sigma Quality for Software

1) Architect the system and the software correctly but 
with emphasis on ease of development and 
maintenance

2) Improve the quality of the requirements

3) Design the development process to produce quality 
software
– And follow that process correctly when developing software

1) Architecture 
3) Development

Process
(Outputs)(Inputs)

Software
2) Requirements



Copyright 2022, Dennis J. Frailey Software Quality and Testing 109

Part 2 - Outline

 Introduction
 Six Sigma Overview

Value Added Analysis Overview
 Cost of Quality Analysis Overview



Copyright 2022, Dennis J. Frailey Software Quality and Testing 110

Defining Value

Correctly defining value is the first step of 
customer satisfaction

What Really Matters to the Customer?

Tasks or features that do not directly or indirectly 
contribute to value are not desirable:

They add cost and risk but do not provide appropriate benefits



Copyright 2022, Dennis J. Frailey Software Quality and Testing 111

Dimensions of Customer Value
(and how we achieve them)

 Low Costs / High Benefit
– Product development or 

manufacturing efficiency
– Attractive price

 High Quality
– Customer satisfaction
– Reliability & few defects

 Short Cycle Time
– Rapid product development
– Rapid response to orders



Copyright 2022, Dennis J. Frailey Software Quality and Testing 112

The Goal

Improve all components of the 
customer value triangle

Customer
Value

Quality



Copyright 2022, Dennis J. Frailey Software Quality and Testing 113

Conventional Thinking

    

You Can 
Have Any 

Two of 
These



Copyright 2022, Dennis J. Frailey Software Quality and Testing 114

Conventional Thinking ...

You can improve any one at the expense of the others

High 
Quality and

Low Cost, but Slow

High Quality,
but Slow and Costly

Fast,
Cheap,
but

Shoddy



Copyright 2022, Dennis J. Frailey Software Quality and Testing 115

Even
Better
Value

Better
ValueGood

ValueSatisfactory
Value

Modern Thinking

… you can improve all together



Copyright 2022, Dennis J. Frailey Software Quality and Testing 116

How Can We Improve All Three?

By Changing Process & Culture

How we do itWhat we do Why we do it



Copyright 2022, Dennis J. Frailey Software Quality and Testing 117

Value-Added Analysis

By focusing on
Where we Add Value, 

we can 
Reduce Cost, 

Reduce Defects, and 
Reduce Time



Copyright 2022, Dennis J. Frailey Software Quality and Testing 118

The Value Stream

Consider the sequence of steps that
add value for the customer

 These are known as the value-added steps

 The complete sequence is called the value stream

Get 
Requirements

Ship to the 
Customer

Implement 
the Design

Design the 
Details

Design the 
Architecture



Copyright 2022, Dennis J. Frailey Software Quality and Testing 119

The Non–Value-Added Steps

The other things we do to produce the product

Get 
Requirements

Ship to the 
Customer

Implement 
the Design

Design the 
Details

Design the 
Architecture

Correcting 
Errors

Correcting 
Errors

Correcting 
Errors

Correcting 
Errors

Project Management

Quality Assurance

Training

Etc., etc.

Software 
Development

Software 
Development 
Support 
Functions



Copyright 2022, Dennis J. Frailey Software Quality and Testing 120

And Another Perspective

Scondanibbio.com



Copyright 2022, Dennis J. Frailey Software Quality and Testing 121

What Are the Costs of 
Software Development?

Total Costs

Essential Non Essential

Value-Added Non-Value-Added



Copyright 2022, Dennis J. Frailey Software Quality and Testing 122

Value-Added Costs

Costs for supplies and tasks performed ...
– Materials (e.g., paper, software)
– Labor hours (salaries, benefits)
– Capital equipment (workstations, facilities)

… that produce value
– Products
– Customer satisfaction
– Future labor that will not be expended 

For example, reduced maintenance and repair



Copyright 2022, Dennis J. Frailey Software Quality and Testing 123

The Strict Definition of
“Value-Added”

Any activity that is part of the development process is 
considered a value-added activity if it meets three criteria:

1) Must change the product in some way
2) Must make the product more desirable to the 
customer (i.e., the customer wants the change)

3) Must be done right the first time



Copyright 2022, Dennis J. Frailey Software Quality and Testing 124

The Strict Definition

 This very strict definition helps us open our minds

 So we identify the proper targets for process 
improvement.

 Anything that is not value-added is a suitable target 
for removal or improvement.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 125

Things Not Part of Value-Added

 Features the software engineer thinks are nice but 
the customer doesn’t care about

 Moving a product around
 Translating between incompatible tools
 Repairing mistakes
 Tests and inspections
 Most management activities
 Activities unrelated to the development process
 Many other things we tend to think of as “necessary” 

or “desirable”
And some of them are necessary!



Copyright 2022, Dennis J. Frailey Software Quality and Testing 126

Some Non-Value-Added Activities 
Must be Done

 Management
 Quality Assurance
 Testing
 ...

The term “value-added” is used to help us open our minds as 
we improve our processes.  

It does not mean that the above tasks are not worthwhile 
or that the people who do them are not important.

May be worthwhile 
even though they 
do not add value



Copyright 2022, Dennis J. Frailey Software Quality and Testing 127

Such Tasks are Called 
“Non-Value-Added Essential” Tasks

Tasks performed because the process of developing 
software is not perfectly efficient

– Peer reviews

– Evaluations, inspections, verification and validation (testing)

– Data collection, storage and analysis

– Extra reviews and verifications required by customer or 
company policy (usually because of past problems)

– Certain overhead costs (employee benefits, support activities)



Copyright 2022, Dennis J. Frailey Software Quality and Testing 128

Why are These Tasks Essential?

 They might not be necessary in a perfect world

 But they are necessary with our current methods 
of product development 
– and our current level of product development knowledge

Every process has some essential, 
non-value-added elements



Copyright 2022, Dennis J. Frailey Software Quality and Testing 129

Non-Value-Added, Not Essential

Tasks that are not value-added and that are
not essential

Typically, these are tasks that we perform because our 
processes are inefficient or error prone

 Examples:
– Things we do wrong because we are careless
– Things we do wrong because we don’t know how to do 

them correctly
– Things we have always done but no longer need to do
– Things that once made sense but don’t any more due to 

newer technologies or changes in the organization or 
environment



Copyright 2022, Dennis J. Frailey Software Quality and Testing 130

Examples of Non-Value-Added, Not 
Essential Tasks

– Excessive paperwork or approvals

– Rework – doing it over again because we did it wrong the first time

– Waits for equipment repairs, networks, test equipment, approvals, 
etc.

– Debugging because we did a sloppy job of design or coding

– Costs resulting from bugs or other deficiencies in our software 
development tools

– Costs for activities unrelated to the development process

These tasks should be eliminated or streamlined first, 
as they add cost and risk for no useful purpose



Copyright 2022, Dennis J. Frailey Software Quality and Testing 131

Non-Value-Added Tasks are Often 
Hard to See



Copyright 2022, Dennis J. Frailey Software Quality and Testing 132

Some Costs are Especially Painful

Tasks not performed during software development 
(or not performed at the right time or in the right 

way) that cause high costs later on
– Failure related costs
– Debugging & Correcting defects
– Maintenance and repair
– Dealing with unhappy customers

 These can subtract value:
– Loss of customer good will
– Future labor that must be expended

High costs we 
could have 

avoided



Copyright 2022, Dennis J. Frailey Software Quality and Testing 133

Typical Value-Added Categories

Non-EssentialEssential

Value-Added Non-Value-Added (costs $, no value to customer)
1) Customer Wants
2) Changes Product
3) Done Right the 

First Time

• Design
• Development
• Fabrication
• Documentation
• Assembly
• Process
• Creation
• Upgrade
• Shipping

• Set-Up
•Training
• Planning
• Customer-
required test
• Moving Data 
Between Steps
• Many Quality 
Improvement 
activities

• Rework
• Service
• Modification
• Expediting
• Recall
• Correction
• Retest
• Error Analysis

• Extra 
paperwork
• Waits
• Delays
• Bottlenecks
• Counting
• Installing 
Software Tools
• Extra Un-
wanted 
Features



Copyright 2022, Dennis J. Frailey Software Quality and Testing 134

Example: 
Result of Value Added Analysis

Non-EssentialEssential

Value-Added Non-Value-Added (costs $, no value to customer)
1) Customer Wants
2) Changes Product
3) Done Right the 

First Time

• Requirements 
analysis

• Design
• Coding
• Documentation
• Integration
• Manufacturing
• Packaging
• Shipping

• Estimating
• Training
• Planning
• Customer-
required 
acceptance 
test

• Configuration 
Control

• Inspections

• Debugging
• Service calls
• Warranty 
costs

• Shipping costs 
for patches

• Loss of 
customer 
goodwill

• etc.

• Approval by 7 
people!

• Delays for test 
systems

• Data 
conversion 
between design 
tool and coding 
tool

• Wait for 
subcontracted 
hardware



Copyright 2022, Dennis J. Frailey Software Quality and Testing 135

Typical Result After Cost Analysis

 Value-added -- 35% of total cost
 NVA Essential -- 20% of total cost
 NVA Non-essential -- 45% of total cost

Top three non-value-added items for typical 
software projects:
– Rework due to design and coding errors -- 14%
– Extra customer support -- 12%
– Labor costs for individuals waiting for equipment that 

is not available -- 11% 



Copyright 2022, Dennis J. Frailey Software Quality and Testing 136

Part 2 - Outline

 Introduction
 Six Sigma Overview
 Value Added Analysis Overview

Cost ot Quality Analysis 
Overview



Copyright 2022, Dennis J. Frailey Software Quality and Testing 137

The Cost of Quality

Quality costs money
But improving quality can save money

The issue: how to save more than it costs

Quality 
(Fewer Defects; Customer satisfaction)

Customer
Value



Copyright 2022, Dennis J. Frailey Software Quality and Testing 138

Categorizing Quality-Related Costs

1) Cost of Conformance 
– The cost of activities that improve quality

 Prevention Costs – activities that prevent poor quality
 Appraisal Costs – activities that detect poor quality

– So you can fix the product right away

2) Cost of Non-Conformance 
– The price of failure to achieve quality

 Internal Failures - Costs before product shipment
 External Failures - Costs after product shipment

Recommended Quality Strategy:
Invest in conformance to save in non-conformance



Copyright 2022, Dennis J. Frailey Software Quality and Testing 139

Example
 If you test the software first, before shipping, and catch a 

bug before shipping, then the bug might cost you very little:
– Cost to test the software
– Cost to debug the software
– Cost to repair 1 copy of the software

 If you develop the software without much testing, and ship 
to 1000 customers, then a bug might cost you a lot:
– Cost to debug the software
– Cost to repair 1000 copies of the software
– Costs associated with product failure
– Loss of good will and trust by many customers

 They may buy the next product from someone else



Copyright 2022, Dennis J. Frailey Software Quality and Testing 140

Categorizing Quality-Related Costs

Quality Related 
Costs

Failure 
Costs

Internal External

Cost of Non-
Conformance

Cost of 
Conformance

Prevention 
Costs

Appraisal 
Costs



Copyright 2022, Dennis J. Frailey Software Quality and Testing 141

Effects of Process Maturity on Costs

SEI CMM Maturity Level

10

20

30

40

50

60

1 2 3 4 5
Prevention
Appraisal

Internal
Failures

External
Failures

Total COQ

As reported by Knox (see references)



Copyright 2022, Dennis J. Frailey Software Quality and Testing 142

Net Cost of a Process
Categorizing Tasks & Subtasks

Cost of Non 
Conformance

FailureAppraisalPrevention

Cost of 
Conformance

Non Cost of Quality Cost of Quality (all non-value-added)

• Design
• Development
• Fabrication
• Documentation
• Assembly
• Process
• Creation
• Upgrade
• Shipping

• Training
• Planning
• Simulation
• Modeling
• Consulting
• Qualifying
• Certifying

• Inspection
• Testing
• Audits
• Monitoring
• Measure-

ment
•Verification
• Analysis

• Rework
• Service
• Modification
• Expediting
• Recall
• Correction
• Retest
• Error Analysis

Non-
Value-
Added

Value

Added

• Over-
head

• Errors
• Ineff-

icien-
cies



Copyright 2022, Dennis J. Frailey Software Quality and Testing 143

End of Part 2



Copyright 2022, Dennis J. Frailey Software Quality and Testing 144

UT Dallas 

Software Quality and Software Testing

Part 1 – The Big Picture (How Quality 
Relates to Testing)

Part 2 –Achieving Software Quality
Part 3 - Defect Containment

Part 4 – Measuring Software Complexity



Copyright 2022, Dennis J. Frailey Software Quality and Testing 145

Defect Containment (Phase Containment)

This requires that you collect additional information 
about each defect you discover during an inspection 
or as a result of a test:

– In what phase of development was the defect created?

– In what phase was it detected?

Insights.sei.cmu.edu



Copyright 2022, Dennis J. Frailey Software Quality and Testing 146

Note on Defect Containment

 There are several variations on this method

 All use the same basic data (base measures) but they use 
the data in different ways

In this lecture we will illustrate 
one of the variations on this 

method.
You may find others at 

www.sei.cmu.edu



Copyright 2022, Dennis J. Frailey Software Quality and Testing 147

Example of Defect Containment

 Suppose you detect a lot of defects during system test

 And suppose you discover that most of them occurred due 
to bad design procedures

 Then you know that the best way to fix the problem is to 
improve your design procedures



Copyright 2022, Dennis J. Frailey Software Quality and Testing 148

In-Phase Defects

In-phase defects are those that are corrected in the 
same development phase where they were introduced

- Example: a coding error that is caught and corrected 
while you are writing the code, before going to system test

 Measuring in-phase defects tells you which parts of 
your process generate large numbers of defects 

In-phase defects are generally the 
least costly to correct.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 149

Out-of-Phase (Leaking)  Defects

Out-of-phase defects are those that are detected (and 
corrected) after they leave the phase where they 

were introduced
- Example: a design error caught during unit test

 Measuring out-of-phase defects indicates how often 
you allow defects to “leak” from the phase where 
they originate
– this is a predictor of post-release failures
– and also a good help in root cause analysis

Out-of-phase defects are generally 
the most costly to correct.

Finding the 
Ultimate Cause 

of a Defect



Copyright 2022, Dennis J. Frailey Software Quality and Testing 150

Defect Containment Analysis
Step 1 – Collect the Data

Defect Report

Description ______________

________________________

Phase where found ____

Phase where introduced ___

________________________

Priority _____ Type _____

Estimated Cost to Fix _____

etc.

Track Each Defect and Record Phase of Origin

Some of this 
information 
may not be 
determined 

until you 
have 

debugged 
the software



Copyright 2022, Dennis J. Frailey Software Quality and Testing 151

Phase where Defect was Inserted

Phase 
where 
Defect 

was 
Detected

I&T

I&T

C&T

C&T

DDPD

DD

PD

RA

RA

POST 
REL.

POST 
REL.

15

23

1783

5512

42 8

15

Defect Containment Analysis
Step 2 – Record and Display the Data

This 
shows the 

data at 
the end of 
the C&T 
phase

Defect Containment Matrix – Sequential Process



Copyright 2022, Dennis J. Frailey Software Quality and Testing 152

Scrum where Defect was Inserted

Scrum 
where 
Defect 

was 
Detected

S5

S5

S4

S4

S3S2

S3

S2

S1

S1

POST 
REL.

POST 
REL.

15

23

1783

5512

42 8

15

Defect Containment Analysis
Step 2 – Record and Display the Data

This 
shows the 

data at 
the end of 

the 4th

SCRUM

Defect Containment Matrix – SCRUM Process



Copyright 2022, Dennis J. Frailey Software Quality and Testing 153

Defect Containment Analysis Step 3 -
Using the Data

If you see many out-of-phase defects in a specific cell, 
you can narrow down the source of defects

Phase where Defect was Inserted

Phase 
where 

Defect was 
Detected

I&T

I&T

C&T

C&T

DDPD

DD

PD

RA

RA

POST 
REL.

POST 
REL.

15

23
1783

5512
42 8
15

A lot of defects originate during requirements 
analysis but are not detected until detailed design 

A lot of defects are created 
during preliminary design



Copyright 2022, Dennis J. Frailey Software Quality and Testing 154

Defect Containment Analysis Step 4 -
Using the Data to Provide 

Additional Insight

Over time, you can correlate 

 the number of defects in the matrix

 to the number of failures found by the customer

 You can use this to predict and ultimately to 
manage the number of failures

A method for doing this will be shown briefly in today’s 
lecture



Copyright 2022, Dennis J. Frailey Software Quality and Testing 155

Observations on This Method

1. Definition of a defect must be adhered to in a 
consistent way across the project and, preferably, 
across all projects in an organization
– Some projects may resist defining defects the same way as 

other projects.

2. As shown, there is no distinction by type or 
severity of defect

– But this distinction can also be made if the original data are 
good enough)



Copyright 2022, Dennis J. Frailey Software Quality and Testing 156

If you detect and correct defects early, it greatly 
reduces cost and reduces post-release failures (i.e., 

those seen by the customer)

 But this requires very good understanding of 
requirements and of customer “care-abouts”

Dau.dodlive.mil

A Key Lesson Learned from Measuring 
Defect Containment



Copyright 2022, Dennis J. Frailey Software Quality and Testing 157

Contained and Leaking Defects

RA PD DD C&UT I&T Post Rel
RA 15
PD 12 55
DD 22 8 23
C&UT 15 3 8 17
I&T
Post Rel

Ph
as

e 
of

  
D
et

ec
ti
on

Phase of Injection

Out-of-phase or Leaking

In-phase or Contained


Sheet1

				RA		PD		DD		C&UT		I&T		Post Rel

		RA		15

		PD		12		55

		DD		22		8		23

		C&UT		15		3		8		17

		I&T

		Post Rel





Sheet2

		





Sheet3

		







Copyright 2022, Dennis J. Frailey Software Quality and Testing 158

Large Numbers Indicate
Software Development Process Problems

 Large numbers in any column indicate that your 
development process is generating many defects in 
that process phase

 A large number in a “leaking” cell means you are 
also paying a lot of money for rework 

This tells you where to focus 
process improvement efforts



Copyright 2022, Dennis J. Frailey Software Quality and Testing 159

A Typical Defect Containment Chart

Phase Originated
Phase
Detected

RA PD DD CUT I&T SYS INT POST REL tota

RA 730 73
PD 158 481 63
DD 19 2 501 522
CUT 15 0 12 63 90
I&T 25 4 35 321 9 394
SYS INT 4 0 7 19 4 2 36
POST REL 48 2 0 36 0 0 67 15

total 999 489 555 439 13 2 67 256

Least Costly Defects are on the Diagonal 

These defects are “Contained” within the step where they were caused



Copyright 2022, Dennis J. Frailey Software Quality and Testing 160

Escaping Defects are Those
Not Detected until After Release

Phase
Originated

Phase
Detected

RA PD DD CUT I&T SYS INT POST
REL

total

RA 730 730

PD 158 481 639

DD 19 2 501 522

CUT 15 0 12 63 90

I&T 25 4 35 321 9 394

SYS INT 4 0 7 19 4 2 36

POST
REL

48 2 0 36 0 0 67 153

total 999 489 555 439 13 2 67 2564

Escaping Defects Cost the Most of All


		

		Phase Originated

		

		

		

		

		

		

		



		Phase Detected

		RA

		PD

		DD

		CUT

		I&T

		SYS INT

		POST REL

		total



		RA

		730

		

		

		

		

		

		

		730



		PD

		158

		481

		

		

		

		

		

		639



		DD

		19

		2

		501

		

		

		

		

		522



		CUT

		15

		0

		12

		63

		

		

		

		90



		I&T

		25

		4

		35

		321

		9

		

		

		394



		SYS INT

		4

		0

		7

		19

		4

		2

		

		36



		POST REL

		48

		2

		0

		36

		0

		0

		67

		153



		total

		999

		489

		555

		439

		13

		2

		67

		2564







Copyright 2022, Dennis J. Frailey Software Quality and Testing 161

Other Uses of
Defect Containment Data

There are many uses of defect containment

 Calculating total repair cost
– By recording labor cost to repair defects

 Calculating rework cost
– Reduction in rework can be compared with

cost of prevention activities

 Organizational-level analysis

 Prediction of defects and warranty costs

 Prediction of reliability

Aspennw.com

Ijser.org

Sciencedirect.com



Copyright 2022, Dennis J. Frailey Software Quality and Testing 162

Defect Repair Cost

RA PD DD C&UT I&T Post Rel
RA $1

PD $12 $2

DD $22 $8 $2

C&UT $45 $18 $8 $2

I&T
Post Rel

Ph
as

e 
of

  
D
et

ec
ti
on

Phase of Injection

Cell i,j indicates the

average labor cost 

to repair a defect 

created in phase i and

detected in phase j

Labor Cost to Repair Defects Aspennw.com


Sheet1

				RA		PD		DD		C&UT		I&T		Post Rel

		RA		$1

		PD		$12		$2

		DD		$22		$8		$2

		C&UT		$45		$18		$8		$2

		I&T

		Post Rel





Sheet2

		





Sheet3

		







Copyright 2022, Dennis J. Frailey Software Quality and Testing 163

Total Repair Cost

If you multiply the defect containment chart by the 
“labor cost to repair” chart, you get total repair cost

Cell-wise
multiplication

Defect 
Counts

Cost to 
Repair

Total 
Repair Cost

Aspennw.com



Copyright 2022, Dennis J. Frailey Software Quality and Testing 164

RA PD DD C&UT I&T Post Rel
RA $15

PD $144 $110

DD $484 $64 $46

C&UT $675 $54 $64 $34

I&T
Post Rel

Ph
as

e 
of

  
D
et

ec
ti
on

Phase of Injection

Total Repair Cost Example

Aspennw.com

Cell i,j indicates the

total labor cost 

to repair all defects 

created in phase i and

detected in phase j


Sheet1

				RA		PD		DD		C&UT		I&T		Post Rel

		RA		$15

		PD		$144		$110

		DD		$484		$64		$46

		C&UT		$675		$54		$64		$34

		I&T

		Post Rel





Sheet2

		





Sheet3

		







Copyright 2022, Dennis J. Frailey Software Quality and Testing 165

Rework Costs Are 
The Portion Of the Prior Chart
That Are Not On The Diagonal

RA PD DD C&UT I&T Post Rel
RA $15

PD $144 $110

DD $484 $64 $46

C&UT $675 $54 $64 $34

I&T
Post Rel

Ph
as

e 
of

  
D
et

ec
ti
on

Phase of Injection

Costs off-diagonal are rework costs

Ijser.org


Sheet1

				RA		PD		DD		C&UT		I&T		Post Rel

		RA		$15

		PD		$144		$110

		DD		$484		$64		$46

		C&UT		$675		$54		$64		$34

		I&T

		Post Rel





Sheet2

		





Sheet3

		







Copyright 2022, Dennis J. Frailey Software Quality and Testing 166

This Concept Applies
Throughout the Product Lifetime
You can track repair cost and rework cost

during development
and 

after delivery to the customer

 You can further break defects down by characteristics:
– Phase of Development where Defect Occurred
– Severity
– Importance to Customer
– Cost to Repair
– Time to Repair
– Which Part of the Software was Responsible
– Etc.

Ijser.org

Aspennw.com

Imgkid.com



Copyright 2022, Dennis J. Frailey Software Quality and Testing 167

This Can Help You Justify
Process Improvements

Rework costs are the equivalent of “software scrap”

 If you can reduce scrap by investing in defect 
prevention activities, you can save a lot of money 
(see earlier  slides)

 If you make an improvement in your development 
process, you can use the defect containment chart to 
show the savings in reduced repair cost

 And you can use the chart to determine which parts 
of the process are most important to improve

Ijser.org



Copyright 2022, Dennis J. Frailey Software Quality and Testing 168

Analyzing Defect Data at the 
Organizational Level

 By collecting data from many projects, we can show 
historical costs for rework 

 And we can also show patterns of defect containment

…

Organization 
Data

Project 
A Data

Project 
B Data

Project 
C Data

Project 
N Data



Copyright 2022, Dennis J. Frailey Software Quality and Testing 169

Organizational Analysis of Defect 
Containment Data

Analysis of defect containment data for many projects 
over a period of time

may show such organizational information as:
– Most frequent types of defects

– Most costly defects

– Time required to fix defects

– Process steps generating the most defects

– Which design standards help or hurt defects

Typically we collect the data needed for
statistical process control: 

averages, ranges, distributions, maximum, minimum, etc.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 170

Example: Determining an 
Organizational Process Metric

Defect 
Data 
from 

SA/SD 
Projects

Defect 
Data 

from OO 
Projects

SA/SD Defect Pattern OO Defect Pattern



Copyright 2022, Dennis J. Frailey Software Quality and Testing 171

UT Dallas 

Software Quality and Software Testing

Part 1 – The Big Picture (How Quality 
Relates to Testing)

Part 2 –Achieving Software Quality
Part 3 - Defect Containment

Part 4 – Measuring Software Complexity



Copyright 2022, Dennis J. Frailey Software Quality and Testing 172

Contents

 Complexity: what and how to measure

 Structured Programs and Flowgraph Analysis

 Measures of Complexity

 Closing Remarks



Copyright 2022, Dennis J. Frailey Software Quality and Testing 173

Contents

 Complexity: what and how to measure

 Structured Programs and Flowgraph Analysis

 Measures of Complexity

 Closing Remarks



Copyright 2022, Dennis J. Frailey Software Quality and Testing 174

Complexity

We tend to think that complex software is 
more difficult to develop, test and maintain 
and has greater quality problems.

But what do we mean by complexity?

Dictionary definitions of complex:
1. Composed of many interconnected parts
2. Characterized by a very complicated 

arrangement of parts
3. So complicated or intricate as to be hard to 

understand



Copyright 2022, Dennis J. Frailey Software Quality and Testing 175

Complex vs Complicated

Complicated: being difficult to understand but with time 
and effort, ultimately knowable

Complex: having many interactions between a large 
number of component entities.

– As the number of entities increases, the number of interactions
between them will increase exponentially

– It can get to a point where it would be impossible to know and 
understand all of them. 

Hotel-r.net



Copyright 2022, Dennis J. Frailey Software Quality and Testing 176

Changing Complex Software
 Higher levels of complexity in software increase the risk of 

unintentionally interfering with interactions and so increase 
the chance of introducing defects when making changes. 

 In more extreme cases, complexity can make modifying the 
software virtually impossible. Changes introduce more 
problems than they fix.  This is called inherent instability.

Labs.Sogeti.com



Copyright 2022, Dennis J. Frailey Software Quality and Testing 177

Can We Measure Complexity?

Measures of complexity would need to address:
– the parts of the software, 
– the interconnections between the parts,
– and the interactions between the parts.

Information Need
– Something that will help us estimate

– difficulty of programming, 
– difficulty of testing and maintaining, 
– expected level of quality

– Something that will help us evaluate and 
improve our software with regard to the above 
characteristics



Copyright 2022, Dennis J. Frailey Software Quality and Testing 178

How Can We Measure Complexity?

The base measures
would quantify the 
attributes of:

– The parts or 
components of the 
software

– How many parts or 
components there are

– The arrangement of 
the parts

– The interactions of 
the parts



Copyright 2022, Dennis J. Frailey Software Quality and Testing 179

Compound Measures

Combining the base measures into calculations that help 
us address our information needs, answering questions 
such as:

– What aspects of software structure can help forecast
development effort and quality?

– Is my software structure good?

– How should I test my software?

– How can I improve my software structure?

– How much has it improved?



Copyright 2022, Dennis J. Frailey Software Quality and Testing 180

What Can We Measure?

We might learn something about the structure and 
complexity of software by measuring:

– Requirements
 Models, use cases, test cases

– Architecture and Design
 Models, design patterns, structure, control flow, data flow

– The code itself
 Statements, variables, nesting, control flow, data flow

– The way the code is assembled to produce the final product
 Load files, use of libraries



Copyright 2022, Dennis J. Frailey Software Quality and Testing 181

One Problem Is That There are 
Many Systems for Describing 

Software Structure



Copyright 2022, Dennis J. Frailey Software Quality and Testing 182

Generally Speaking We Measure 
Complexity of Systems and of 

Components that Make up Systems
We usually start with the architecture of the system

This is the 
architecture of a 
system defined 

using structured 
analysis. There are 

complexity 
measures for the 

system and for the 
individual 

components.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 183

With Object Oriented Systems, the Nature of 
the Components Varies with the Methodology

This means we must sometimes devise 
methodology-specific measures

This is the 
architecture of a 

system defined using 
object oriented 

methodology. There 
are complexity 

measures for the 
system and for the 

individual 
components.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 184

Order of Presentation

We will focus on complexity of structured, procedural 
software

– Because this is where most of the research has been focused

– Because the results apply to software in many different 
languages

– Because most of the results also apply to object oriented 
software

From time to time we will mention how the concepts are 
applied to object oriented software



Copyright 2022, Dennis J. Frailey Software Quality and Testing 185

Fundamentally, the complexity of a system depends 
on the number of components and the number of 

links between the components of the system

It can be further complicated by the degree to which 
the components share common elements (coupling)

System Level Complexity

VS



Copyright 2022, Dennis J. Frailey Software Quality and Testing 186

Contents

 Complexity: what and how to measure

 Structured Programs and Flowgraph Analysis

 Measures of Complexity

 Closing Remarks



Copyright 2022, Dennis J. Frailey Software Quality and Testing 187

Control Flow Captures Major 
Complexity-related Attributes

Our intuitive notions of complexity would say that when 
there are more parts and more complex ways they 

interact, we have more complex software.

vs

Many measures of complexity make use of control flow analysis.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 188

Control Flow is Often Modeled with 
Directed Graphs

Node

Arc 
or 

Edge

This could be flow within a 
system or within a module



Copyright 2022, Dennis J. Frailey Software Quality and Testing 189

In Many Notations, the Shape of the Node 
Conveys the Nature of What it Represents

For example, flowcharts:



Copyright 2022, Dennis J. Frailey Software Quality and Testing 190

Notation To Be Used Here
(in these slides)

 Arc or Edge
 Procedure Node 

– A block of code. 
Any decisions are 
internal to the 
block. One exit.

 Predicate Node 
– One that makes a 

decision.
 Start Node

 Stop Node

D Gor

E Squarish shape, 
Exactly one arc leaving

F Round shape, Two or 
more arcs leaving

Colors of procedure and 
predicate nodes are not part of 

the notation.
Colors are used only to clarify 
points being made on a slide.

A path between nodes



Copyright 2022, Dennis J. Frailey Software Quality and Testing 191

A FlowGraph

A flowgraph is a directed graph with
– One start node, and

– One end node, 

 that has the following property:
– Every other node lies on a path between the start node 

and the end node

Notes:
– This notation works for any procedural programming language
– But not all languages can represent all possible flowgraphs
– Certain common language constructs have readily recognized 

flowgraph forms
See later slides or Fenton, 

page 379 for some examples.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 192

Example: Code, Flowchart, and Flowgraph



Copyright 2022, Dennis J. Frailey Software Quality and Testing 193

What is a Structured Program?

A structured program is one constructed out of 
three fundamental control structures:

– Sequence (ordered statements and/or subroutines)
 Examples:  A = B+C;  D = FUNC(E,F)

– Selection (one or more statements is executed, 
depending on the state of the system)
 Example: If C1 Then <true option> Else <false option>

– Iteration [loop] (a statement or block is executed 
until the program has reached a certain state)
 Examples: While; Repeat; For; Do… Until



Copyright 2022, Dennis J. Frailey Software Quality and Testing 194

Structured Program Notation

Blue: NS Diagram notation; Green: Flowchart notation

Sequence              Selection                Iteration (Loop)    



Copyright 2022, Dennis J. Frailey Software Quality and Testing 195

These Three are Sufficient to Represent 
Any Program

 Note: This does not necessarily mean it is the only 
way or the best way.

 The theorem simply states that it is possible to 
represent any function with only the three control 
structures.

The structured program theorem, also 
known as the Böhm-Jacopini theorem, says 
that the class of flowgraphs representing 

the three control structures above can 
compute any computable function



Copyright 2022, Dennis J. Frailey Software Quality and Testing 196

Why Are Structured Programs Important?

Studies have shown that limiting the software to a 
small number of well defined control structures has 
these benefits:

– Easier to understand
– Less error prone
– Easier to analyze and test
– Easier to measure

1 See References

This started out as a theoretical concept, developed by Edsger Dijkstra and others.  

It became more widely known when Dijkstra wrote his famous “Go To Considered 
Harmful”1 letter to the editor of Communications of the ACM (in 1968). 



Copyright 2022, Dennis J. Frailey Software Quality and Testing 197

There May Be More Than One Flowgraph
Representing A Particular Kind of Control Structure

Example: Two flowgraphs for selection

End

A

X

True
False

If A then X
(D0)

Y

End

A

X

True False

If A then X else Y
(D1)

Each of these is also 
a “prime” flowgraph, 
meaning it cannot be 
reduced to a simpler 
form.  We’ll discuss 
this further in later 

slides.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 198

Two Prime Flowgraphs for Iteration

End

A

X

True
False

While A Do 
X

(D2)

End

X

B
True

False

Repeat X 
Until B

(D3)



Copyright 2022, Dennis J. Frailey Software Quality and Testing 199

Prime Flowgraphs and D Notation

 A prime flowgraph is one that cannot be reduced (to a 
simpler flowgraph). 
– D0, D1, D2 and D3 are all prime.
– See discussion of “reduction” in later slides.

 The D notation is a widely recognized way of denoting 
certain standard, prime flowgraphs.

If A then B
(D0)

This is a standard type of flowgraph, known as 
a D0 structured flowgraph.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 200

The Flowgraphs D0-D3 (and sequencing) 
Can Be Used To Represent Any Program

As a result, some define a program to be “structured” 
only if it is represented by a combination of these 
flowgraphs.

However, there are several additional prime 
flowgraphs that represent commonly used language 
constructs and that can greatly simplify some 
programs.

So different organizations and researchers have 
defined additional prime flowgraphs that may be 
permitted in “structured” programs.

In other words, every organization defines structured in its own way.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 201

Structured Program Flowgraphs:
What Is Common and What Is Not

 What all structured programs have in common
– Definitions of edges, nodes, etc.
– Built out of the three fundamental constructs: sequence, 

selection, and iteration
– It must be possible to reduce a program to a combination of a 

selected set, S, of prime flowgraphs

 What is Different
– Which prime flowgraphs are included in the set S.

See Fenton, section 9.2 for a discussion of flowgraphs and 
structure and, in particular, section 9.2.1.2 for a generalized 

notion of structuredness.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 202

An Example of Why
Additional Prime Flowgraphs are Useful

B

End

A

X

True
False

YX

True False

D

If only D0 and D1 can be used to 
represent this code, then we must use 
a D1 within another D1 and must show 

X twice.
This is the equivalent of rewriting the 

source code as shown below.

IF A THEN X
ELSE 

IF B THEN X
ELSE Y

IF A or B THEN X
ELSE Y

X must be 
duplicated. If 
X is a lot of 
code this is 

inconvenient.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 203

D5 Was Introduced To Allow Common 
Boolean Selection Decisions

End

A

X

True
False

If A then B
(D0)

Y

End

A

X

True False

If A then B else C
(D1)

X

End

A

B
True

False

Y

False True

If A or B then X 
else Y
(D5)

Y

End

A

B

True
False

X

FalseTrue

If A and B then X 
else Y
(D5)



Copyright 2022, Dennis J. Frailey Software Quality and Testing 204

D4 Was Introduced to Allow Middle-Exit Loops

End

A

X

True
False

While A 
Do X
(D2)

End

X

B True

False

Repeat X 
Until B

(D3)

End

X

A
True

False

YDo X  
Exit when A  

Do Y  
Repeat

(D4)



Copyright 2022, Dennis J. Frailey Software Quality and Testing 205

C Flowgraphs are Prime Flowgraphs
for CASE Statements

x2

End

A

x1

a1

…

ana2

xn

Case A of
A1 : X1
A2 : X2

…
An : Xn
(C1…n)

Note that there are 
an arbitrary number 
of these, depending 

on n – the number of 
possible selections.

Note also that these are classified 
as “C” structured flowgraphs, not 

“D” structured flowgraphs, because, 
technically, the CASE statement is 
not one of the three fundamental 

control structures.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 206

L Structured Flowgraphs Represent 
Multi-Exit Loops

B

End

X

A
True

False Y True

False

Do X  
Exit when A

Do Y  
Exit when B  

Repeat
(L2)

A two-exit loop is 
shown (L2). This is 

commonly used.  
However higher 
numbers of exits 

could be 
represented as well.

This also has its own 
classification (L) rather than 

being considered a D 
flowgraph because it is not 

one of the three fundamental 
control structures.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 207

Why Use Flowgraphs to Measure Complexity?

 Directed Graphs clarify the flow of control between 
software elements

 Many measures of software complexity can be 
determined from directed graphs

 It is fairly easy to represent any program with a 
directed graph
– Note that there might be several ways to graph a program, but 

they should all have the same measure of complexity if they 
are done correctly



Copyright 2022, Dennis J. Frailey Software Quality and Testing 208

Combining Flowgraphs

Flowgraphs with a single entry and single exit can be 
combined in the following ways:
 Sequencing: Merging the end node of one flowgraph

with the start node of the other
 Nesting: Replacing an arc in one flowgraph with the 

other flowgraph

Flowgraphs can also be reduced or condensed or 
decomposed by reversing the above
 For example, collapsing a nested flowgraph into a 

single node and arc
– This is, conceptually, the equivalent of replacing the nested 

flowgraph with a procedure call



Copyright 2022, Dennis J. Frailey Software Quality and Testing 209

Sequencing Example

Sequence S1 Sequence S2

Sequence S1 S2

End
A

CB

End
D

FE

G

A

CB

End
D

FE

G



Copyright 2022, Dennis J. Frailey Software Quality and Testing 210

Nesting Example

D calls 
procedure P

Procedure P

End
D

CB

A End
G

FE

H
P

D

CB
End

G

FE

H

A



Copyright 2022, Dennis J. Frailey Software Quality and Testing 211

Reduction Example 1

A End
D

CB

A
D

CB
End

G

FE

H

Procedure P

End
G

FE

H
P

D calls 
procedure P

Any single-
entry, single-

exit sub-
graph can be 
replaced by a 

procedure 
call



Copyright 2022, Dennis J. Frailey Software Quality and Testing 212

Reduction Example 2

Any sequence 
containing no 
decisions or 

iterations can be 
reduced to a 
single node

A DCB

A C,DB

A B,C,D

A,B,C,D



Copyright 2022, Dennis J. Frailey Software Quality and Testing 213

McCabe Cyclomatic Complexity
The Cyclomatic Complexity (v) of a Module or a System is:

– The number of linearly independent1 paths (basis paths) 
through the module or system

– If F is a flowgraph2, then v(F) = e – n + 2
 Where e is the number of edges (arcs)
 And n is the number of nodes

– If a system consists of multiple flowgraphs that are not 
connected together, the formula becomes:

v(F) = e – n + 2c
 Where c is the number of separate flowgraphs3

1 To be discussed a little later 2 With one entry and one exit
3 In graph theory these are called connected components



Copyright 2022, Dennis J. Frailey Software Quality and Testing 214

Examples of Cyclomatic Complexity

 Example 1:

 v(F) =   e – n + 2   =   3 – 4 + 2   =   1

 There is only 1 path through the code

 Example 2:

A DCB

C

E

A

B
True

False

D

False True

 v(F) =   e – n + 2   = 
6 – 5 + 2   =   3

 There are 3 possible paths 
through the code:
 A B D E
 A B C E
 A C E



Copyright 2022, Dennis J. Frailey Software Quality and Testing 215

Why Is Cyclomatic Complexity Useful?

 Number of paths indicates maximum number of 
separate tests needed to test all paths
– This should relate to the difficulty of testing the program

 It also indicates the number of decision points in 
the program (plus 1)
– This should relate to the difficulty of understanding and 

testing the program

Cyclomatic complexity is not a perfect measure of 
these things (see Fenton, chapter 9) but it is a fairly 

reliable guide.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 216

The Higher the Cyclomatic Complexity, the 
Harder the Code Is to Maintain



Copyright 2022, Dennis J. Frailey Software Quality and Testing 217

What Do We Mean by
Linearly Independent Paths?

The number of linearly independent paths is the 
minimum number of end-to-end paths required to touch 
every path segment at least once.

– Sometimes the actual number of paths needed to cover the system is 
less than this because it may be possible to combine several path 
segments in one traversal.

There may be more than one set of linearly independent 
paths for a given flowgraph

– This becomes more likely as you get more complex flowgraphs

Determining a set of linearly independent paths is 
something you might study in a course on testing or in a 
course on graph theory

– It gets harder as the cyclomatic complexity goes up



Copyright 2022, Dennis J. Frailey Software Quality and Testing 218

A Graph with Five 
Connected Components

The graph above is not a flowgraph by our strict definition, 
because it has more than one start and stop node and not all nodes 
are connected to any given start or stop node. But it illustrates the 
concept of connected components.

This graph has five 
separate regions, 

which are connected 
within themselves, 

but not to each other. 
Each region is called 

a connected 
component.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 219

Why Would We Care About Graphs 
with Many Connected Components?

 We could measure the cyclomatic complexity of a 
system consisting of several separate modules

 In object oriented systems we could measure the 
cyclomatic complexity of a class containing multiple 
methods



Copyright 2022, Dennis J. Frailey Software Quality and Testing 220

McCabe Essential Complexity

The Essential Complexity (ev) of a Module or a System is:
– The cyclomatic complexity of the fully reduced flowgraph
– Example:

 ev(F) = 1 because this can be reduced to one node

 If the flowgraph is constructed completely of prime 
flowgraphs (i.e., it is structured) then the essential 
complexity will be 1. 

A DCB



Copyright 2022, Dennis J. Frailey Software Quality and Testing 221

Some Issues with Essential Complexity
(slide 1 of 2)

Essential complexity is intended to tell us how well 
structured a program is.

However
 As originally defined, the only valid primes were the 

four D structured primes: D0, D1, D2, D3

– So if you allow additional primes, do you revise the definition 
of essential complexity to include the new primes?

– Do you allow D4 and D5 but nothing else?

– What about the C structured primes and the L structured 
primes?



Copyright 2022, Dennis J. Frailey Software Quality and Testing 222

Some Issues with Essential Complexity
(slide 2 of 2)

If your program is not “structured” it isn’t clear whether 
the essential complexity tells us much beyond that

– Does a larger essential complexity actually mean anything?

– If two programs have the same essential complexity, are they 
equally complex?
 See fig. 9.13 in Fenton for an example
 He shows two flowgraphs that have the same essential complexity, 

but intuitively one of them is a lot more complex and harder to 
understand than the other.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 223

Contents

 Complexity: what and how to measure

 Structured Programs and Flowgraph Analysis

 Measures of Complexity

 Closing Remarks



Copyright 2022, Dennis J. Frailey Software Quality and Testing 224

There is No Single Measure of Complexity

 As we have seen, there are different ways to measure 
complexity 

 Research shows that sometimes the attributes of 
complexity may conflict
– For example

 low coupling doesn’t always mean high cohesion
 low cyclomatic complexity doesn’t always mean easy to 

understand
 structured software may be awkward to produce in languages 

without certain constructs

Use complexity measures as guidelines, not as 
“magic numbers” that result in rigid requirements 

for code.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 225

END OF
Part 4



Copyright 2022, Dennis J. Frailey Software Quality and Testing 226

Any Questions?



Copyright 2022, Dennis J. Frailey Software Quality and Testing 227

End of
Lecture



Copyright 2022, Dennis J. Frailey Software Quality and Testing 228

References
Part 1

Bourque, P. and R.E. Fairley, eds., Guide to the Software Engineering 
Body of Knowledge, Version 3.0, IEEE Computer Society Press, 2014. ISBN 
978-0769551661. Available in PDF format (free) at  www.swebok.org. 

Crosby, Philip, Quality is Free. New York: McGraw-Hill, 1979. ISBN 0-07-
014512-1.

Fenton, Norman and James Bieman, Software Metrics: A Rigorous and 
Practical Approach, Third Edition, Chapman and Hall, 2014. ISBN 978-
1439838228.
Juran, Joseph M., Juran on Quality by Design: The New Steps for Planning 
Quality into Goods and Services. Free Press, 1992. ISBN-13: 978-
0029166833.

Project Management Institute, SWX – The Software Extension to the 
PMBOK Guide Fifth Edition, Project Management Institute, 2013. ISBN 978-
1628250138.  

Weinberg, Gerald M.,  Quality Software Management, Volume 1, Systems 
Thinking, Dorset House, New York, 1992.  ISBN: 0-932633-22-6.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 229

References
Part 2
(1 of 4)

 Crosby, Philip B.  Quality is Free, New York, McGraw-Hill, 1979.
 Practical guidance on how to reduce cost and improve quality by value-

added analysis
 Deming, W. Edwards, Out of the Crisis, MIT Press, 1986, ISBN: 

0911379010
 Deming originated most of the ideas in value-added analysis 

 Eswaramurthi, K. and P. V. Mohanram, “Value and Non-Value 
Added (VA/NVA) Activities – Analysis of a Inspection Process – A Case 
Study”, International Journal of Engineering Research & 
Technoloogy, V 2 #2 (February, 2013).
 An excellent case study applied to manufacturing.

 Juran, J. M., Juran on Leadership for Quality: An Executive 
Handbook, The Free Press, 1989.
 One of the most frequently cited sources of info on this subject.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 230

References
Part 2
(2 of 4)

 Knox, Presentation on Raytheon studies, as  reported by Houston 
and Keats, Software Quality Matters, vol 5, no 1 (Spring, 1997), 
U. of Texas SW Quality Institute
 Actual study done in 1993.

 Ketkamon, Kanyakorn and Jirarat Teeravaraprug, “Value and 
Non-value Added Analysis of Incoming Order Process,” Proceedings 
of the 2009 International Multiconference of Engineers and 
Computer Scientists (IMECS 2009), Vol II, Hong Kong
 Applying Six Sigma principles to printed circuit board manufacturing.

 http://www.brighthubpm.com/six-sigma/48826-the-
importance-of-value-added-analysis-in-lean-six-sigma/
 This site discusses how processes are analyzed in “six sigma” programs 

to identify what is value-added



Copyright 2022, Dennis J. Frailey Software Quality and Testing 231

References
Part 2
(3 of 4)

 Abran, A., et. al., “Functional Complexity Measurement”, 
Proceedings, IWSM 2001 - International Workshop on 
Software Measurement.

 Adams, E., “Optimizing preventive service of software products”, 
IBM Journal of Research and Development, vol 28, no. 1 (1984), 
pp. 2-14.

 Chidamber, S. and Chris Kemerer, A Metrics suite for Object 
Oriented Design, MIT Sloan School of Management E53-315 (1993).

 Dijkstra, Edsger, “GO TO Considered Harmful”, letter to the editor 
of Communications of the ACM, March, 1968.

 Fenton, Chapter 9
 Henry, S. and D. Kafura, “Software Structure Metrics Based on 

Information Flow”, IEEE Transactions on Software Engineering, 
Volume SE-7, No. 5 (Sept, 1981), pp 510-518.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 232

References
Part 2
(4 of 4)

IEEE 9982.2 (1988). IEEE Guide for the Use of IEEE Standard 
Dictionary of Measures to Produce Reliable Software, A25.  Data of 
Information Flow Complexity.  P112.

Kitchenham, B. A., “Measuring to Manage”, in Mitchell, Richard J. 
(editor), Managing Complexity in Software Engineering, London, 
Peter Peregrinus, Ltd. (1990). ISBN 0 86341 171 1

Lavazza, L. and G. Robiolo, “Functional Complexity Measurement: 
Proposals and Evaluations”, Proceedings of ICSEA 2011: the Sixth 
International Conference on Software Engineering Advances.

Stevens, W., G. Myers and L. Constantine, “Structured Design”, IBM 
Systems Journal, vol 13, no 2 (1974), pp 115-139.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 233

References
Part 3
(1 of 2)

Chatfield, C., Statistics for Technology, A Course in Applied Statistics, 
Third Edition, Chapman and Hall, London (1983), ISBN 978-0412253409.

Fenton, Norman and James Bieman, Software Metrics: A Rigorous and 
Practical Approach, Third Edition, Chapman and Hall, 2014. ISBN 978-
1439838228, Chapter 6.

Hedstrom, John and Dan Watson,  “Developing Software Defect 
Prediction,” Proceedings, Sixth International Conference on Applications of 
Software Measurement, 1995.

Jones, Capers, Applied Software Measurement, McGraw Hill, 1991. ISBN: 
0-07-032813-7.

Knuth, Donald, Seminumerical Algorithms: The Art of Computer 
Programming, Vol II, Addison-Wesley, 1969. ASIN: B00157WFAU



Copyright 2022, Dennis J. Frailey Software Quality and Testing 234

References
Part 3
(2 of 2)

Ott, R.L. and M. T. Longnecker, An Introduction to Statistical Methods 
and Data Analysis, 6th Edition, Duxbury Press (2008), ISBN 978-
0495017585.

Snyder, Terry and Ken Shumate,  Defect Prevention in Practice (Draft 
white paper), Hughes Aircraft Company, October 22, 1993.

Ross, Sheldon M..  Introduction to Probability Models, Academic Press, 
1993. Musa, John, Software Reliability Engineering: More Reliable Software, 
Faster Development and Testing, McGraw Hill. ISBN: 0-07-913271-5. 



Copyright 2022, Dennis J. Frailey Software Quality and Testing 235

References
Part 4
(1 of 2)

Abran, A., et. al., “Functional Complexity Measurement”, Proceedings, 
IWSM 2001 - International Workshop on Software Measurement.

Chidamber, S. and Chris Kemerer, A Metrics suite for Object Oriented 
Design, MIT Sloan School of Management E53-315 (1993).

Fenton, Norman and James Bieman, Software Metrics: A Rigorous and 
Practical Approach, Third Edition, Chapman and Hall, 2014. ISBN 978-
1439838228, Chapter 9

Fenton, N. and A. Melton, “Deriving Structurally Based Software 
Measures,” Journal of System Software, vol 12 (1990), pp 177-187.

Henry, S. and D. Kafura, “Software Structure Metrics Based on 
Information Flow”, IEEE Transactions on Software Engineering, Volume SE-
7, No. 5 (Sept, 1981), pp 510-518.



Copyright 2022, Dennis J. Frailey Software Quality and Testing 236

References
Part 4
(2 of 2)

IEEE 9982.2 (1988). IEEE Guide for the Use of IEEE Standard Dictionary 
of Measures to Produce Reliable Software, A25.  Data of Information Flow 
Complexity. P112.

Stevens, W., G. Myers and L. Constantine, “Structured Design”, IBM 
Systems Journal, vol 13, no 2 (1974), pp 115-139.

Kitchenham, B. A., “Measuring to Manage”, in Mitchell, Richard J. (editor), 
Managing Complexity in Software Engineering, London, Peter Peregrinus, 
Ltd. (1990). ISBN 0 86341 171 1

Lavazza, L. and G. Robiolo, “Functional Complexity Measurement: 
Proposals and Evaluations”, Proceedings of ICSEA 2011: the Sixth 
International Conference on Software Engineering Advances.


	UT Dallas ��Software Quality and Software Testing��Part 1 – The Big Picture (How Quality Relates to Testing)�Part 2 –Achieving Software Quality�Part 3 - Defect Containment�Part 4 – Measuring Software Complexity�
	UT Dallas ��Software Quality and Software Testing��Part 1 – The Big Picture (How Quality Relates to Testing)�Part 2 –Achieving Software Quality�Part 3 - Defect Containment�Part 4 – Measuring Software Complexity�
	Dennis J. Frailey�Retired Principal Fellow - Raytheon Company
	A Recommended Book on Measurement
	More Recommended References
	Part 1��The Big Picture��How Quality Relates to Testing�and�Other Aspects of Software Engineering��
	Part 1 - Outline
	My Story
	My First Really Big and Difficult Computing Problem Marine Seismic Exploration
	Characteristics of the Situation
	Consequences of a Software Failure�Phase 1 – Getting to the Ship
	Consequences of a Software Failure�Phase 2 – On the Ship
	Consequences of a Software Failure�Phase 3 – Getting Off the Ship
	In Other Words
	Real Projects for Real Customers
	Projects are Often Big & Complex
	Characteristics of Big Projects
	Many Organizations Claim to Develop High Quality, Reliable Software
	What Do We Mean When We Talk About  “High Quality Software”?
	Measurement is Often Involved in How We Test or Evaluate Software
	But What Are We Testing or Evaluating?�What is “Desired Behavior”?
	Test and Evaluation
	Slide Number 23
	SWEBOK Facts
	The 15 SWEBOK Knowledge Areas
	Software Requirements
	Software Design
	Software Construction
	Software Testing
	Software Configuration Management
	Software Engineering Management
	Software Quality
	Part 1 - Outline
	What Do We Mean by Quality?
	Concepts of Quality for Products
	“Quality is�Conformance to Requirements”
	Issues with �“Conformance to Requirements” (1 of 5)
	Issues with�“Conformance to Requirements” (2 of 5)
	Issues with�“Conformance to Requirements” (3 of 5)
	Issues with�“Conformance to Requirements” (4 of 5)
	Issues with�“Conformance to Requirements” (5 of 5)
	“Quality is �Fitness for Intended Use”
	Issues with�“Fitness for Intended Use” (1 of 4)
	Issues with�“Fitness for Intended Use” (2 of 4)
	Issues with�“Fitness for Intended Use” (3 of 4)
	Issues with�“Fitness for Intended Use” (4 of 4)
	“Quality is�Value to Someone”
	Issues with “Value to Someone” (1 of 4)
	Issues with “Value to Someone” (2 of 4)
	Issues with “Value to Someone” (3 of 4)
	Issues with “Value to Someone” (4 of 4)
	Definitions of Software Quality
	Summary of Quality Definition Issues
	Part 1 - Outline
	Test and Evaluation
	Testability
	Testing is unsuitable when ...
	Evaluation Techniques �(other than testing)
	The Steps Involved in a�Good Testing Process
	Test Preparation Activities
	Reasons why Requirements/Designs�May be Hard to Test
	Suggestions (slide 1 of 3)
	Suggestions (slide 2 of 3)
	Suggestions (slide 3 of 3)
	Other Traceability Options
	Reasons Why Code May Be Difficult to Test
	Sample Outline of a Test Plan
	Sample List of Test Cases
	Test Execution Activities
	Repair Activities
	��Measuring the Progress of a Testing Activity��
	�Testing Requires Resources
	Some of the Things We Wish to Know About Testing Resources
	Resource Measures are Important for�Managing a Project
	Resource Measures Often Measure People
	Measure Processes, Not People
	Resource Measures�Testing Progress
	The Metric Should Not Be the Goal!
	Using Testing Progress Metrics Improperly�Wrong Performance Goals
	Using Testing Progress Metrics Improperly�Measuring Individual Performance
	Using Testing Progress Metrics Properly
	�Seeding and Tagging�A simple and effective way to assess Testing Progress��
	Seeding and Tagging
	Overview
	Seeding and Tagging Details
	Example of Seeding and Tagging
	UT Dallas ��Software Quality and Software Testing��Part 1 – The Big Picture (How Quality Relates to Testing)�Part 2 – Achieving Software Quality�Part 3 - Defect Containment�Part 4 – Measuring Software Complexity�
	Part 2 - Outline
	Quality Emcompasses Many Characteristics
	There are Many Well Established Techniques for Defining, Improving, Measuring, Testing, Predicting and Managing Quality
	The Good News
	The Bad News
	Example from IBM1
	Issues on Real Projects That Have Resulted in More Comprehensive Quality Engineering Approaches
	How Good Do You Have to Be?
	What About Variance?
	Other Limitations of�Many Quality Improvement Programs
	Part 2 - Outline
	Six Sigma Origins
	Six Sigma is a Comprehensive Program
	The Origin of the Term “Six Sigma”
	Six Sigma Principles�Product Quality Depends on Three Things
	Six Sigma Principles�To Improve Quality You Must Address �All Three Factors
	Six Sigma Principles �Some Key Elements of �Six Sigma Programs
	Applying to Software
	Software Quality Depends on:
	Achieving 6 Sigma Quality�(for a manufactured product)
	Achieving 6 Sigma Quality for Software
	Part 2 - Outline
	Defining Value
	Dimensions of Customer Value�(and how we achieve them)
	The Goal
	Conventional Thinking
	Conventional Thinking ...
	Modern Thinking
	How Can We Improve All Three?
	Value-Added Analysis
	The Value Stream
	The Non–Value-Added Steps
	And Another Perspective
	What Are the Costs of Software Development?
	Value-Added Costs
	The Strict Definition of�“Value-Added”
	The Strict Definition
	Things Not Part of Value-Added
	Some Non-Value-Added Activities Must be Done
	Such Tasks are Called �“Non-Value-Added Essential” Tasks
	Why are These Tasks Essential?
	Non-Value-Added, Not Essential
	Examples of Non-Value-Added, Not Essential Tasks
	Non-Value-Added Tasks are Often Hard to See
	Some Costs are Especially Painful
	Typical Value-Added Categories
	Example: �Result of Value Added Analysis
	Typical Result After Cost Analysis
	Part 2 - Outline
	The Cost of Quality
	Categorizing Quality-Related Costs
	Example
	Categorizing Quality-Related Costs
	Effects of Process Maturity on Costs
	Net Cost of a Process�Categorizing Tasks & Subtasks
	�End of Part 2
	UT Dallas ��Software Quality and Software Testing��Part 1 – The Big Picture (How Quality Relates to Testing)�Part 2 –Achieving Software Quality�Part 3 - Defect Containment�Part 4 – Measuring Software Complexity�
	Defect Containment (Phase Containment)
	Note on Defect Containment
	Example of Defect Containment
	In-Phase Defects
	Out-of-Phase (Leaking)  Defects
	Defect Containment Analysis�Step 1 – Collect the Data
	Defect Containment Analysis�Step 2 – Record and Display the Data
	Defect Containment Analysis�Step 2 – Record and Display the Data
	Defect Containment Analysis Step 3 - Using the Data
	Defect Containment Analysis Step 4 - Using the Data to Provide �Additional Insight
	Observations on This Method
	A Key Lesson Learned from Measuring Defect Containment
	Contained and Leaking Defects
	Large Numbers Indicate�Software Development Process Problems
	A Typical Defect Containment Chart
	Escaping Defects are Those�Not Detected until After Release
	Other Uses of�Defect Containment Data
	Defect Repair Cost
	Total Repair Cost
	Total Repair Cost Example
	Rework Costs Are �The Portion Of the Prior Chart�That Are Not On The Diagonal
	This Concept Applies�Throughout the Product Lifetime
	This Can Help You Justify�Process Improvements
	Analyzing Defect Data at the Organizational Level
	Organizational Analysis of Defect Containment Data
	Example: Determining an Organizational Process Metric
	UT Dallas ��Software Quality and Software Testing��Part 1 – The Big Picture (How Quality Relates to Testing)�Part 2 –Achieving Software Quality�Part 3 - Defect Containment�Part 4 – Measuring Software Complexity�
	Contents
	Contents
	Complexity
	Complex vs Complicated
	Changing Complex Software
	Can We Measure Complexity?
	How Can We Measure Complexity?
	Compound Measures
	What Can We Measure?
	One Problem Is That There are Many Systems for Describing Software Structure
	Generally Speaking We Measure Complexity of Systems and of Components that Make up Systems
	With Object Oriented Systems, the Nature of the Components Varies with the Methodology
	Order of Presentation
	System Level Complexity
	Contents
	Control Flow Captures Major Complexity-related Attributes
	Control Flow is Often Modeled with Directed Graphs
	In Many Notations, the Shape of the Node Conveys the Nature of What it Represents
	Notation To Be Used Here�(in these slides)
	A FlowGraph
	Example: Code, Flowchart, and Flowgraph
	What is a Structured Program?
	Structured Program Notation
	These Three are Sufficient to Represent Any Program
	Why Are Structured Programs Important?
	There May Be More Than One Flowgraph Representing A Particular Kind of Control Structure
	Two Prime Flowgraphs for Iteration
	Prime Flowgraphs and D Notation
	The Flowgraphs D0-D3 (and sequencing) Can Be Used To Represent Any Program
	Structured Program Flowgraphs: What Is Common and What Is Not
	An Example of Why�Additional Prime Flowgraphs are Useful
	D5 Was Introduced To Allow Common Boolean Selection Decisions
	D4 Was Introduced to Allow Middle-Exit Loops
	C Flowgraphs are Prime Flowgraphs for CASE Statements
	L Structured Flowgraphs Represent Multi-Exit Loops
	Why Use Flowgraphs to Measure Complexity?
	Combining Flowgraphs
	Sequencing Example
	Nesting Example
	Reduction Example 1
	Reduction Example 2
	McCabe Cyclomatic Complexity
	Examples of Cyclomatic Complexity
	Why Is Cyclomatic Complexity Useful?
	The Higher the Cyclomatic Complexity, the Harder the Code Is to Maintain
	What Do We Mean by�Linearly Independent Paths?
	A Graph with Five Connected Components
	Why Would We Care About Graphs with Many Connected Components?
	McCabe Essential Complexity
	Some Issues with Essential Complexity�(slide 1 of 2)
	Some Issues with Essential Complexity�(slide 2 of 2)
	Contents
	There is No Single Measure of Complexity
	Slide Number 225
	Any Questions?
	Slide Number 227
	References�Part 1
	References�Part 2�(1 of 4)
	References�Part 2�(2 of 4)
	References�Part 2 �(3 of 4)
	References�Part 2�(4 of 4)
	References�Part 3�(1 of 2)
	References�Part 3�(2 of 2)
	References�Part 4�(1 of 2)
	References�Part 4�(2 of 2)

