Ut D
UT Dallas
Software Quality and Software Testing

Part 1 - The Big Picture (How Quality
Relates to Testing)
Part 2 —Achieving Software Quality
Part 3 - Defect Containment
Part 4 - Measuring Software Complexity

Copyright 2022, Dennis J. Frailey Software Quality and Testing

UT D
UT Dallas
Software Quality and Software Testing

Part 1 — The Big Picture (How Quality
Relates to Testing)

Copyright 2022, Dennis J. Frailey Software Quality and Testing

ut D Dennis J. Frailey

Retired Principal Fellow - Raytheon Company

PhD Purdue, 1971, Computer Science
Assistant Professor, SMU, 1970-75
Associate Professor, SMU, 1975-77

(various titles), Texas Instruments, 1974-1997;
(various titles), Raytheon Co. 1997-2010
Adjunct Associate Professor, UT Austin, 1981-86
Adjunct Professor, SMU, 1987-2017
Adjunct Professor, UT Arlington, 2014-2020

Areas of specialty: software development
process, software project management,
software quality engineering, software metrics,
compiler design, operating system design, real-
time system design, computer architecture

Copyright 2022, Dennis J. Frailey Software Quality and Testing

A Recommended Book on Measurement

Some of the material covered Sl]fhl'g'lﬂ rE
Metrics

A Rigoraus and

today is taken from this book.

Although not a book on testing, PR teat Asgroach
it is a very good book on B niTiOn
measurement and addresses

several aspects of testing. e

Liiad Sernan

Software Metrics — A Rigorous and Practical Approach
By Norman Fenton and James Bieman

Copyright 2022, Dennis J. Frailey Software Quality and Testing

UT D More Recommmended References

SWX - The Software Extension to the Project
Management Body of Knowledge, available from PMI
() and the IEEE Computer Society

()

— This is a general reference that may be important if you want
to apply some of today’s techniques in project management.

SWEBOK - The Guide to the Software Engineering Body
of Knowledge, available from the IEEE Computer Society
and also at

— This is another general reference that gives an overall picture
of software engineering knowledge and summarizes topics that
any software engineer should know about.

Copyright 2022, Dennis J. Frailey Software Quality and Testing

http://www.pmi.com/
http://www.computer.org/
http://www.swebok.org/

UT D

Part 1
The Big Picture
How Quality Relates to Testing

and
Other Aspects of Software Engineering

Copyright 2022, Dennis J. Frailey Software Quality and Testing

UT D Part 1 - Outline

>»The Scope of Software Quality
= Defining Quality
= Observations on the Testing Process

Copyright 2022, Dennis J. Frailey Software Quality and Testing

Ut D

My Story

How I Learned the Importance of Software
Quality and Reliability

Copyright 2022, Dennis J. Frailey Software Quality and Testing

UT D My First Really Big and Difficult Computing Problem
Marine Seismic Exploration

survey ship

Copyright 2022, Dennis J. Frailey Software Quality and Testing

UT D Characteristics of the Situation

= About a dozen “ships” around the world, searching for oil
— 26’ ships — many sailors would call these “boats”, not “ships”

= 1970’'s-vintage minicomputer
- Less memory and computing power than a modern smart phone

= The computer must:
— Navigate the ship so you know where you are
= There was no GPS - but did have satellite signals twice a day

— Collect and record the seismic data
= Massive amounts of data

— Do cursory analysis of the data

= Each ship only comes to port once every 3 months or so
— Helicopters bring supplies about once a month

= It costs several million dollars a day to operate each ship

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 0

Ut b Consequences of a Software Failure
Phase 1 - Getting to the Ship

= Problem is described via satellite phone
to central facility

= If no quick fix is found, the responsible

programmer is identified e

Pinterest.com

= The responsible programmer is flown to
the nearest port

= Then flown to the ship via helicopter

Verticalmag.com

Copyright 2022, Dennis J. Frailey Software Quality and Testing

_ Conet.ie.com)

11

ur b Consequences of a Software Failure
Phase 2 - On the Ship

= The programmer Is seasick

for a day or two

Science.museum.com

Copyright 2022, Dennis J. Frailey Software Quality and Testing

12

Ut D

= The programmer stays on the
ship until it next comes to port

— It would cost too much to send them
back by helicopter

— Occasionally a supply helicopter will
have room for an extra passenger

- Sometimes the captain will let you off
on a nearby shore

Copyright 2022, Dennis J. Frailey Software Quality and Testing

Consequences of a Software Failure
Phase 3 - Getting Off the Ship

Gettyimages.com

13

Ut D

In Other Words

Copyright Getty Images
Istockphoto.com

The Programmer is Very
Strongly Motivated to have
Highly Reliable Software

Copyright 2022, Dennis J. Frailey Software Quality and Testing 14

Ut D

Real Projects for Real Customers

Most Interesting Projects are Big, Complex and
Challenging

Copyright 2022, Dennis J. Frailey Software Quality and Testing

15

UT D Projects are Often Big & Complex

Air Traffic
Control
ATCT)

Air Route
Traffic Control
Center
(ARTCC)

Terminal
Radar Control
(TRACON) ©2001 HowStufWorks |

Copyright 2022, Dennis J. Frailey Software Quality and Testing

Ut D

Characteristics of Big Projects

Lots of People - hundreds or
even thousands

Millions of lines of code

Many different companles may
be involved

Multiple locations /

Many different disciplines

« Systems engineers Safety engineers
 Quality engineers Logistics engineers

« Mechanical engineers Financial experts

« Software engineers Project managers

- Electrical engineers Subcontract managers

L
Copyright 2022, Dennis J. Frailey Software Qudlity! and Testing 1 7

Many Organizations Claim to Develop High
Quality, Reliable Software

» But how many of them have defined what they mean by
“"High Quality”?

> How many of them can measure the quality of their
software?

> How many of them can evaluate whether their software has
achieved “"High Quality”?

» How many of them know how to engineer high quality into
their software?

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 8

What Do We Mean When We Talk About
“"High Quality Software”?

= Satisfies requirements

= Works correctly

= Does what I want it to do
= Does no harm

= Reliable - I can depend on it

= Easy to use
= Portable

= Easy to update and maintain

= Easy to test
= Runs efficiently / fast
= Consistent

Copyright 2022, Dennis J. Frailey

1 "

_

Do we know how to
achieve these
characteristics?

o

)

—

Software Quality and Testing

Can we test for
these
characteristics?

4 N\
Can we

measure

2
L them? y

19

UT D Measurement is Often Involved in
How We Test or Evaluate Software

Requirement How we might Test it
= Software must handle up > Measure how many transactions
to 10 transactions per it processes per minute
minute
= Software must be » Count the faults during
reliable operation?

» Count something during
development?

= Software must be easy to > Have 25 people use the software
use and rate how easy it is to use

= Software must be easy to > Run standard test procedures
test and measure how long it takes or
how well the defects are found

Copyright 2022, Dennis J. Frailey Software Quality and Testing 20

But What Are We Testing or Evaluating?
What is "Desired Behavior”?

[—

= Satisfies requirements These are all

* Works correctly — characteristics of

= Does what I want it to do Software Quality

= Does no harm

* Reliable - I candependonit | qp oo e i ony known |
= Easy to use methods of achieving these.
" Portable . And much in common

= Easy to update and maintain
= Easy to test
= Runs efficiently / fast

= Consistent And measurement is
often part of testing.

Copyright 2022, Dennis J. Frailey Software Quality and Testing 2 1

Testing is one way to
assess software quality.

—

UT D Test and Evaluation

Evaluation: Appraising a product through one of the
following:

— Examination, analysis, demonstration
— Testing
— or other means
Testing: Exercising a system to improve confidence

that it satisfies requirements or to identify
variations between desired and actual behavior.

[“Evaluation” is the broader term.]

Copyright 2022, Dennis J. Frailey Software Quality and Testing 2 2

Ut D

Downloadable at:

=5y SWEBOK'
V3.0

Guide to the Software
Engineering Body of Knowledge

Editors

Pierre Bourque
Richard E. (Dick) Fairley

< IEEE

wWWwWWwW.swebo k.org IEEE@)computer society

Copyright 2022, Dennis J. Frailey

Software Quality and Testing 23

Ut D

SWEBOK Facts

3 Editions have been produced since 1998
2 Editors: Pierre Bourque and Richard Fairley
8 Contributing and Co-Editors

15 Knowledge Areas, each with its own Editors
— Each aligned with related ISO and IEEE standards

9-person Change Control Board

Over 300 reviewers (chosen due to their expertise in
various aspects of software engineering)

— Over 1500 comments received and adjudicated on various drafts (3™
edition)

36 Items in Consolidated Reference List

Copyright 2022, Dennis J. Frailey Software Quality and Testing
24

Ut D The 15 SWEBOK Knowledge Areas

Software Requirements
Software Design
Software Construction
Software Testing
Software Maintenance

Software Configuration
Management

Software Engineering
Management

Software Engineering
Process

Copyright 2022, Dennis J. Frailey

Software Engineering Models
and Methods

Software Quality

Software Engineering
Professional Practice

Software Engineering
Economics

Computing Foundations
Mathematical Foundations
Engineering Foundations

Software Quality and Testing 2 5

Ut D

Software Requirements

Software
Requirements

Requirements
and Software
Requirements

Copyright 2022, Dennis J. Frailey

Software Quality and Testing

Soi:t\'vare Requirements Requirements Requirements Requirements Requirements Practical Sot:tware
Requirements M — I . . . A . . Requirements
Process Elicitation Analysis Specification Validation Considerations
Fundamentals Tools
Definition of a ; : System . Iterative Nature
Requirements Requirements co Requirements of the
—» Software —» Process Models Sources Classification (> Definition Reviews K i
Requirement Document Requirements
Process
" g roduct and e s Elicitation Conceptual n SRySte.m T Change
rocess rocess Actors Techniques Modeling equirements rototyping Management
Requirements Specification
Functional and P g;z?lfzréal i Model Requirements
—» Nonfunctional M PP R & L» Requirements Validati Anq'b "
Reiteisnts and Management equirements Specification ributes
Allocation
Emergent Process Quality Requirements Acceptance Requirements
Properties and Improvement Negotiation Tests Tracing
Quantifiable g Formal Measuring
Requirements Analysis Requirements
System

26

Ut D

Software Design

Software Design

Software Design
Principles

Copyright 2022, Dennis J. Frailey

Distribution of
Components

Error and
Exception
Handling and
Fault Tolerance

Interaction and
Presentation

—» Security

Architecture
— Design
Decisions

Families of

— Programs and
Frameworks

The Design of
—» Information
Presentation

User Interface
Design Process

Localization and
Internationalization

Metaphors and
Conceptual Models

Software Quality and Testing

Data Structure-
Centered Design

Component-Based
Design (CBD)

—» Other Methods

Software Design Key Issues in soliware User Interface Soft\?are Desng.n Software Design Softwarl? Heclen Software Design
[l Fundamentals (1 Software Design | [| Siepcture and Design Qualiey: Anslysls Notations] Straseglesand Tools
& Architecture e and Evaluation Methods
General Design Architectural General User. Quality Stht}lﬂ?l General
Concepts — Concurrency — Stuctures and > Interface Design [Atiributes — Descriptions Strategies
Viewpoints Principles (Static View)
lit Behavioral : :
Control and i s J Suaviora Function-Oriented
gl — Handling of o Heex Inenince [y Analysis and L3 Descriptions — (Structured)
Software Design ng Styles Design Issues Evaluation D ic Vi uctu
Events . (Dynamic View) Design
Techniques
Software Desi)) The Design of S—
Process o2 —» Data Persistence —» Design Patterns —» User Interaction —» Measures > g:ﬁgc:l Oriented
Modalities

27

Ut D

Copyright 2022, Dennis J. Frailey

Software Construction

Software
Construction
Softwarfa Managing Practical Construction Softwarfz
— Construction —i G R . —i N — Construction
Construction Considerations Technologies
Fundamentals Tools
Minimizi!’ng C.onstruction in Construction API Design » Development
Complexity Life Cycle Models Design and Use Environments
» Anticipating > Const_ruclion Eonstmction > Objef:t—Oriented » GUI Builders
Change Planning anguages Runtime Issues
Constructing for Construction sterizati . .
nsructng ALCY |5 Parameterization —» Unit Testing Tools
Verification Measurement and Generics
Assertions, Design Profiling,
—» Reuse > Construction > by Contract, and Performance

Standards in

Construction

Testing

Construction for
Reuse

Construction with
Reuse

> Cons‘tmction
Quality

> Integration

Defensive
Programming

Error Handling,
Exception

>

Handling, and Fault

Tolerance

> Executable Models

State-Based and
Table-Driven
Construction
Techniques

Runtime
I Configuration and
Internationalization

Grammar-Based
Input Processing

Concurrency
Primitives

Analysis, and
Slicing Tools

28

Ut D Software Testing

e

Software Testing

| Software Testing | | Test Levels | Test Techniques | Test-Related | Test Process | Software Testing
Fundamentals Measures Tools
Based on the Evaluati
: valuation
Testing The Target of Soft.ware, of the Practical Testing Tool
> Related the Test — Engincer’s P Considerations Support
Terminology Intuition and Ur oc%ral'}'l pp
Experience ner Test
L Input Domain- Evaluation of ;
> Key Issues L gbjgc'ctlves oF —» Based L3> the Tests Ly Test gggiiorles oL
esting Techniques Performed Activities
Rela.tlonshlp of Code-Based
Testing to Other Techniques
Activities 1
Fault-Based
Techniques

Usage-Based
Techniques

Model-Based
Techniques

Techniques Based
—» on the Nature of
the Application

Selecting and
L3 Combining
Techniques

Copyright 2022, Dennis J. Frailey Software Quality and Testing

Ut D

Software Configuration Management

Surveillance of
SCM

Copyright 2022, Dennis J. Frailey

Software Quality and Testing

Software
Configuration
Management
Software Software Softwarei Software Software Release Softwarei
Management of : . Configuration : Configuration
1 the SCM Process | I Configuration — Configuration — Status —{ Configuration — Management Management
Identification Control ; Auditing and Delivery
Accounting Tools
izational P Requesting, Software Software
= Organizatona L 5 Identifying |_,, Evaluating, and Configuration Functional Software
Context for Items to be U Status Configuration Building
SCM Controlled Software Changes Information i
Constraints and - Implementing Software _ Software
e GriidunisE o L(inra g S |y Configuration |y Physical . Software Release
SCM Process Y Changes Status) Configuration Management
Reporting Audit
In-Process
|y Planning for Deviations and Audits of a
SCM Waivers Software
Baseline
—» SCM Plan

30

UT D Software Engineering Management

Software
Engineering
Management
Software
e A F : Software . 4
Initiation and Software Project Software Project Review and i R Engineering
i — : B B ; — Closure — Engineering
Scope Definition Planning Enactment Evaluation Management
Measurement
Tools
s o it Establish and
Determination . Determining s
. . Impl tat| i
—» and Negotiation —» Process Planning [O?IIZIZ::H ation —» Satisfaction of gle termining > Sustif
of Requirements Requirements ostre Measur_ement
Commitment
Software '
. . e Reviewing and Plan the
e DBt Acquistionand | p 1 ting s 5 Measurement
nalysis chiverables pPp Performance ctivities Process
Management
Progess for the Effort, Schedule, Implementation Perform the
_)Rev¥e_w and —»and Cost —» of Measurement | » Measurement
Revision of Estimation Process Process
Requirements
Resource ; Evaluate
Allocation —» Monitor Process Measurerment
—» Risk Management [Control Process
Quality .
Eé Management —>Reportng
L3 Plan Management

Copyright 2022, Dennis J. Frailey Software Quality and Testing

Ut D

Software Quality

Software Quality

Software Quality

Software Quality
Improvement

Software
Safety

Copyright 2022, Dennis J. Frailey

Software Quality
Measurement

Software Quality and Testing

Software Quality RS arnati Practical Software Quality
[| Fundamentals m g Considerations Tools
Processes

Software

Engineering Software Quality Software Quality

Culture and Assurance Requirements

Ethics

Value and Verification Defact
—> Costs of a,nd‘] > Characterization

Quality Validation

Modi:ls and T Software Quality
— Quality o Kealiita —»> Management

Characteristics Techniques

UT D Part 1 - Outline

= The Scope of Software Quality
»Defining Quality

= Observations on the Testing Process

Copyright 2022, Dennis J. Frailey Software Quality and Testing

33

Ut D

Copyright 2022, Dennis J. Frailey

What Do We Mean by
Quality?

Software Quality and Testing

34

ut D Concepts of Quality for Products

“Quality is conformance to requirements”
Crosby

“Quality is fitness for intended use”
Juran

“Quality is value to someone”
Weinberg

Copyright 2022, Dennis J. Frailey Software Quality and Testing

35

< D “Quality is
Conformance to Requirements”

= If testable requirements can be established, then it is
possible to decide whether the product satisfies the
requirements — by testing it.

= If measurable quality characteristics can be established,
then it is possible to decide on the extent to which the
product satisfies the requirements — by measuring it.

= Thus you can avoid disputes and have workable
contractual relationships

However ...

Copyright 2022, Dennis J. Frailey Software Quality and Testing 3 6

UT D Issues with

“"Conformance to Requirements” (1 of 5)

Who establishes the requirements?
- Sponsor - The one who pays for the product

— End User - The one who will use the product

— Sales or Marketing - The one who will sell the product

- Engineering - The ones who will design and build it

Planetgeek.ch

Copyright 2022, Dennis J. Frailey Software Quality and Testing

r N\
What the What the
end user e'I;g'_'r:e"

uilds

9 wants y

37

Ut D Issues with
“"Conformance to Requirements” (2 of 5)

Flaws

Are the requirements right? T
] REQUIREMENT FLAWS
— consistent YORY
2. INCOMPLETE / UNCLEAR o)
- CO m p I ete 3. UNREALISTIC / UNCOMPETITIVE

4. INCORRECT
— V | S | b | e 5. CORRELATIONS NOT KNOWN / DEVELOPED

— correct R——— 00151040030

Slideshare.net

» Who determines whether the
requirements are right?

Quora.com

> What if you discover a problem later on?

Copyright 2022, Dennis J. Frailey Software Quality and Testing

ur b Issues with
“"Conformance to Requirements” (3 of 5)

Is it even possible to define the requirements in a
measurable and testable way?

- Requirement: software must be reliable

- What does this actually mean?
* Doesn’t fail very often? --- How often is too often?
= Failures do not cause severe problems?

» T khow it when I see it?

Copyright 2022, Dennis J. Frailey Software Quality and Testing

39

ur b Issues with
“"Conformance to Requirements” (4 of 5)

What about implicit vs. explicit requirements?
— Explicit requirement: pizza should be hot and flavorful
- Implicit requirements:

= comes sliced in reasonably sized pieces

* not harmful

» fits in the pizza box

Copyright 2022, Dennis J. Frailey Software Quality and Testing

40

UT D Issues with

“"Conformance to Requirements” (s of 5)

What about when requirements change during the
development process?

- Who makes the changes”

- Who controls and authorizes the changes”

- Who pays for the consequences of changes?

Change Control

A crucial component in governing a system is a stringent ch
S...

ange control
proces

Internal Audit Requests

Integvations l Security Changes
Change Contvol

P .

Special Reauests e

Business Process Chawnges tug

Bersin s, petoitte

Copyright 2022, Dennis J. Frailey Software Quality and Testing

LI I “Quality is
Fithess for Intended Use”

= This definition is based on a fundamental
concept of law - that a product should be
suitable for the use that it is intended for.

= This definition accommodates the fact that
we may not be able to fully define the
requirements.

However ...

Copyright 2022, Dennis J. Frailey Software Quality and Testing 4 2

UT D Issues with
“"Fithess for Intended Use” (1 of 4)

Who defines fitness?

— Consider a TV set

= which fithess characteristics are not
understood by

—Typical User
- Engineer
—Sales Personnel

Copyright 2022, Dennis J. Frailey Software Quality and Testing

43

UT D Issues with
“"Fitness for Intended Use” (2 0f4)

Who defines software fitness?

— Consider a software program

#E 0ok -

= which fitness characteristics are not B @ = B -

Mew Folder Address Book Alphabet Butches Calculator

understood by | -
- The typical software developer? o

close application

Fle Help S menu

™ toolbar

program list

selection cursor

- The inexperienced end user?

Rt e Slider

[f—. mouse

. F el r -
_ = : pointer
T 1 e eX p e rI e n Ce d e n d u Se r? ;a‘g Speak and Story-book from The 5 %
Type Abcs Gingerbre. .. j change
|Dpips the progiam for ediing. 61 /20Q0. 112, iz 352KB / e 76 B e Window size
qui'ck help slatLlebar N inpf(rn?'ﬁ'::tin;n \free space on disk

Gemtree.com

Copyright 2022, Dennis J. Frailey Software Quality and Testing

44

UT D Issues with
“"Fitness for Intended Use"” (30f4)

Different users have different definitions of fithess

— Ease of use for novices
— Control of fine details for experts
— Ease of maintenance for support staff

— Able to survive power failures

— Compatibility with previous system

Theodysseyonline.com

» Uses change as users grow in experience

— Too many “ease of use” and “automatic” features may
frustrate an expert

Copyright 2022, Dennis J. Frailey Software Quality and Testing

45

UT D Issues with
“Fitness for Intended Use"” (4 of 4)

The “pleasant surprise” concept
User gets more than he or she expected

They really knew what they h

were doing when they

designed this software

g There is often tension between the engineer

knowing better than the customer and the
customer knowing better than the engineer

Copyright 2022, Dennis J. Frailey Software Quality and Testing

46

— “Quality is
Value to Someone”

= This definition incorporates the idea that quality
is relative

= And it places increased emphasis on
understanding what quality means to the
intended user of the software

However ...

Copyright 2022, Dennis J. Frailey Software Quality and Testing

a7

UT D
Issues with “"Value to Someone” (1.f4)

Whose opinion counts?

What Can it survive
n features do spilled drinks?

you want?

How is the
financial software?

| want hot
games

Does it have
Facebook and
Twitter?

»You may need to weigh different opinions

Copyright 2022, Dennis J. Frailey Software Quality and Testing

Ut D

Issues with “"Value to Someone” (2 of 4)

Logic vs Emotion
- "Glitz"” v. "Substance”

Copyright 2022, Dennis J. Frailey

g Which Car A
is Best for

ilv?
Our Famlly.)

k.. -
-)
.)\ |
£)
i

Software Quality and Testing

Emotion

49

UT D]
Issues with “"Value to Someone” (3 of 4)

Value depends on What Features are Most Important

— Space Shuttle
= 0 defects
= Reliability :

- Video Game
= Good user interface
= High performance

— School Laptop e e
= Rugged
= Fast
= Good Battery Life = =
= Good Software

Copyright 2022, Dennis J. Frailey Software Quality and Testing

50

Ut D

Issues with "Value to Someone” (4 of 4)

Some Needs are Implicit (unstated)

Explicit Implicit

I need a desk
And a chair
And convenient electrical outlets

I need an office
It must have a computer
And lots of space

T

Copyright 2022, Dennis J. Frailey Software Quality and Testing

51

i Definitions of Software Quality

IEEE: The degree to which the software possesses a

desired combination of attributes

Crosby: The degree to which a customer perceives
that software meets composite expectations

Note that both definitions imply
multiple expectations

Copyright 2022, Dennis J. Frailey Software Quality and Testing

52

Ut D

Summary of Quality Definition Issues

You Must Define Quality
— Before you can engineer it into your product
- ... and before you can measure it
— ... or test whether the product has the desired quality attributes

Quality has Multiple Elements
— It reflects a multitude of expectations

Quality is Relative
— Quality is in the eye of the customer

Quality encompasses fitness, value, and other attributes

Copyright 2022, Dennis J. Frailey Software Quality and Testing

53

UT D Part 1 - Outline

= The Scope of Software Quality

= Defining Quality

»0Observations on the Testing
Process

54

UT D Test and Evaluation

Evaluation: Appraising a product through one of the
following:

— Examination, analysis, demonstration
— Testing
— or other means
Testing: Exercising a system to improve confidence

that it satisfies requirements or to identify
variations between desired and actual behavior.

[“Evaluation” is the broader term.]

Copyright 2022, Dennis J. Frailey Software Quality and Testing 5 5

UT D Testability

A product is testable if:
— It can be tested in a reasonable way (readily testable)
— The tests are well defined, comprehensive, and not overly redundant

— Each test can be directly traced to and from:
= product requirements,
= derived requirements resulting from design decisions, or
= design or coding elements calling for specific testing

— Each test failure can be directly traced to:
= a requirement that is not being met, or
= A design element that was not properly implemented, or
= A portion of the code that has a programming error

[Good testing starts with testable]

requirements and designs.

Copyright 2022, Dennis J. Frailey Software Quality and Testing
56

Ut D

Testing is unsuitable when ...

= It would destroy the product

= It is too dangerous

= It is too costly

= It cannot reasonably be expected to provide
confidence that requirements are satisfied

= It cannot be done

Copyright 2022, Dennis J. Frailey

Software Quality and Testing

57

UT D Evaluation Techniques
(other than testing)

= Examination

- For example, reading designs or code or other
documents to check for errors

= Demonstration
- e.g. flying an airplane to show that it can fly
- e.g. running a program to show that it works

= Other techniques (examples)
— providing a formal proof that a program is correct

- showing through statistical analysis that the
probability of a defect is below a threshold

Copyright 2022, Dennis J. Frailey Software Quality and Testing

58

Ut D

The Steps Involved in a
Good Testing Process

= Preparation
= Test Execution

= Repair of defects (debugging)

Copyright 2022, Dennis J. Frailey Software Quality and Testing

59

Ut D Test Preparation Activities

= Making sure that requirements are testable

= Making sure that designs are testable

= Developing test plans

= Developing test cases

= Writing testable code

= Writing test code (or programming test machines)

= Devising procedures for testing, inspecting and
reviewing of results

These activities begin as requirements are being defined, and
continue throughout the development process

Copyright 2022, Dennis J. Frailey Software Quality and Testing 60

Ut D

Reasons why Requirements/Designs
May be Hard to Test

Requirements may not be well understood
Requirements may not be well documented

What seems obvious to the customer or the system
designer may not seem clear or obvious to the software
developer or tester

— Different kinds of knowledge

— Unstated assumptions

The customer and the software developer may not agree on
what constitutes an acceptable test

Changes made during software development may not be
communicated to the software team

Copyright 2022, Dennis J. Frailey Software Quality and Testing 6 1

uTt D Suggestions (slide 1 of 3)

= A requirement or design feature is not complete until
vyou have reached agreement on how it is to be tested

- For each requirement, reach agreement between the software
team and the customer or system engineer on how the
requirement is to be tested

— For each design feature, reach agreement between the software
designer and the software test team on how the design feature is
to be tested

Testable Requirements

Copyright 2022, Dennis J. Frailey Software Quality and Testing 6 2

Ut D

Suggestions (slide 2 of 3)

= Control changes to requirements and design

— Don't allow a requirements or design change without a clear
understanding of the effect of the change on the software cost,
schedule and technical development

— For each change to requirements or design, indicate how the
corresponding tests must be changed.

il
Chabge
Cantral

CHAMGE
REQUEST
Do CUMENTED

BEwALUATE CHAMGE
TECHNICAL, COST & APPROWAL
SCHEDULE IMPACT

MPLEMENT

» CHAMGE

Far

Lames,

More Cornples
Prjects

Copyright 2022, Dennis J. Frailey

SPOMSOR
APPROWAL

'

FO FMAL
BEvALLATION OF
SYSTHEN MPACT

¢

FUNCTIQNAL
REVIEN'S

CHAMGE
CONTROL BOARD
RECOMMENDATION

}.. INTEGRATE

CHAMGE INTQ
BASELINE
OO CUMENT S

Researchgate.net

Software Quality and Testing

63

uTt D Suggestions (slide 3 of 3)

= Keep track of which tests correspond to which
requirements or design elements (traceability)

Ideal

Requirement 1 <€*"\- ———————) Teast 1
Requirement 2 <€*-"—-———) Tost 2
Requirement 3 — TeSt 3

Acceptable
Requirement 1
Requirement 2 Test A
Requirement 3

Copyright 2022, Dennis J. Frailey Software Quality and Testing 64

Ut D

Other Traceability Options

Less Desirable

Test 1
Requirement A Test 2
Test 3

Undesirable
Requirement 1 Test A
Requirement 2 Test B
Requirement 3 Test C

Copyright 2022, Dennis J. Frailey Software Quality and Testing

65

Reasons Why Code May Be Difficult to Test

= Code is not well structured
— Needlessly complex
— Poorly organized

We will address this in
part 4

= Code elements do not trace directly to requirements or
design elements

- So when the code causes a failure, it is hard to determine whether
the problem is with the code or the design or the requirement

= Code is not well documented or does not follow coding
conventions

— Hard to understand
— Error prone

Copyright 2022, Dennis J. Frailey Software Quality and Testing 66

Ut D Sample Outline of a Test Plan

= Summary of Major Testing and/or Integration Steps

= For each test and/or integration step:
— Purpose / goal of the step
— What equipment is needed and what configurations must be set up
- What hardware elements will be integrated/tested at this step
— What software components will be integrated/tested at this step

— Test cases to be performed (in order, if order is important)
» For each test case:
- what requirements will be tested and/or purpose of the test
- what procedures should be followed
- what results are expected

Ideally, this is started at the beginning of a project, with
details filled in and revisions made as the project progresses

Copyright 2022, Dennis J. Frailey Software Quality and Testing 6 7

Sample List of Test Cases

S2R1 Get GPS Data Pull the GPS data from the processing unit The data should match the values given by the GPS receiver.
OR, if a GPS receiver is not available, then the data should
match the canned data provided for testing purposes.
S2R2 Get Radar Data — Raw A/D Samples Pull the radar data from the processor. Format The data should match the values given by the processor.
(reduced range swath) expected is the raw A/D samples (Details TBD.)

S2R3 Get Radar Data — Decimated A/D Pull the radar data from the processor. Format The data should match the values given by the processor.
Samples (full range swath) expected is the decimated A/D samples. (Details TBD.)

S2R4 Get Radar Data — Pulse Compressed Pull the radar data from the processor. Format The data should match the values given by the processor.
Data expected is the pulse compressed data. (Details TBD.)

S2R5 Get Radar Data — CPI Range-Doppler Pull the radar data from the processor. Format The data should match the values given by the processor.
Maps expected is the CPI Range-Doppler maps. (Details TBD.)

S2R6 Get Radar Data — Post NCI Range- Pull the radar data from the processor. Format The data should match the values given by the processor (Details
Doppler Maps expected is the Post NCI Range-Doppler Maps. TBD).

S2R7 Get Radar Data — Exceedence Regions Pull the radar data from the processor. Format The data should match the values given by the processor (Details

expected is the exceedence regions. TBD).

S2R8 Get System Health Information Pull the radar data from the processor. This can be System Health information

a dummy dwell, but we need to check the header
information to ensure the system health status is
working.

Copyright 2022, Dennis J. Frailey

Software Quality and Testing

68

UT D Test Execution Activities

= Conducting tests
= Conducting reviews of test results
= Conducting inspections of procedures or code

[These are the steps where actual testing is performed. }

How to describe

SOFTWARETESTING? 8

Loginworks.com

Copyright 2022, Dennis J. Frailey Software Quality and Testing

69

Ut D Repair Activities

= Debugging (finding the cause of each test
failure)

= Correcting errors

= Re-running tests, inspections, etc.

These can be very expensive activities if
testing is not planned and performed well.

Re-running of tests can add significant
cost and time to a project

[Failure to re-run tests is a major source of software problems }

Copyright 2022, Dennis J. Frailey Software Quality and Testing 70

UT D

Measuring the Progress of a
Testing Activity

Copyright 2022, Dennis J. Frailey

Software Quality and Testing

71

urt b Testing Requires Resources

Resources are entities required in order to perform software
processes and produce software products

— People

— Computers
— Software
— Networks
- Time

Resources usually cost money

» We want to use them efficiently -
not waste them.

> And we want them to be available!

Copyright 2022, Dennis J. Frailey Software Quality and Testing

72

Some of the Things We Wish to Know About
Testing Resources

= Are they available as required?
- Staffing levels / employee turnover rates
— Training (frequency, suitability)
- Equipment and software availability

N Daily Completed

- Network bandwidth) ————
= Are they performing as desired?
— Are testing facilities and tools working well?
— IS the training effective? 012 232 45 &7 8 51011121314 151617 181520

www.chandoo.org

= Are the resources being used efficiently?
— Are we on schedule? Will the project be on time?
— Are we over or under our budget?
— What is our productivity?

Copyright 2022, Dennis J. Frailey Software Quality and Testing 7 3

Resource Measures are Important for

Managing a Project

= They tend to be focused on costs and schedules
relative to plans or deadlines

= For example many projects use a work
breakdown structure to measure project

progress

= Other examples of resource measures that tell

us about project status

— Earned value / Burndown Charts

— PERT and GANTT charts (project status and plans

- Employee or network workload measures

— Employee or equipment availability measures

Copyright 2022, Dennis J. Frailey

Software Quality and Testing

Task Name

= Product Development
+ Develop Project Team
- Planning
+ Define Development Environment
+ Define Functional Level Requirements
= Development Environment Setup
Setup workstations at chosen location
- Design
~ Database Design
Identify Database Requirements
Identify Database Entities.
Document Database Design
Design Database Entities
= Algorithm Design
Donor Motification Algorithm
Fundraiser Suggestion Algorithm
+ Interface Design
- Development
+ Database Architecture
Mobile Donation Interface
Facebook App
+ uRai$e Web Site
+ Web Services
~! Motification Services
Email
SMS
Twitter
Facebook
= Testing
Integration Testing
System Testing
Acceptance Testing
Apha Testing
Beta Testing

Duration

310 days
30 days
14 days
10 days
14 days

3days
3 days
48 days
12 days
1 day’
3days
3days
5 days
5days
S days
5 days

48 days

110 days
10 days
10 days

5 days

110 days

20 days

2 days

1 day
2days
2days
2 days

Start

Mon 1110/11
Mon 1110/11
Mon 221111
Mon 2721111
Mon 2721111
Fri 311
Frizitimm
Fri 3111
Fri3mii1
Friditin
Mon 3/14/11
Thu 317111
Tue 322/11
Fri3fii
Fri3mim1
Fri3iin1
Fri 3111
Wed 51811
Wed 51811
Wed 5/18/11
Wed 5/18/11
Wed 5/18/11
Wed 5M8/11
‘Wed 5/M8/11
Wed 5/18/11
Wed 51811
Wed 518111
Wed 518111

108 days Wed 10119111
30 days Wed 10/19/11

30 days.
25 days
25 days
25 days

Tutorialspoint.com

Sat 10422111
Fri122m1
Fri 1/6/12
Fri2i10M2

Finish

Thu 315112
Fri 2118111
Thu 31011
Fri 3411
Thu 310111
Tue 3/15/11
Tue 31511
Tue 5117111
Mon 32811
Fri3n1M1
Wed 3M6M1
Mon 32111
Mon 3/28M1
Thu 317111
Thu 317H11
Thu 3HTH1
Tue 5117111
Tue 10118111
Tue 531111
Tue 5131111
Tue 524111
Tue 1011811
Tue 6114111
Thu 5/19/11
Wed 5M8M1
Thu SH8M11
Thu SM9M11
Thu SH911
Thu 315112
Mon 11/28M1
Thu 1211111
Thu 11512
Thu 2/19M2
Thu 31512

Resource Measures Often Measure People

= This can lead to problems if people are not measured
fairly

- People are very sensitive to fairness of measurements

= Productivity of people is an especially problematic thing
to measure

— The person doing the hardest job or the most thorough job
tends to look like they are making the least progress

= Even measuring things like defects can be misleading
when applied to people

— The person developing the most complex part of the software
tends to have more errors, especially if rushed to meet deadlines.

— The person testing the most difficult part of the software tends to
discover the most defects and to take the most time

Copyright 2022, Dennis J. Frailey Software Quality and Testing 7 5

Ut D

Measure Processes, Not People

= It is important to measure things that affect
productivity of people, such as:

—Training - is it accomplishing what we want it to accomplish?
—Turnover (planned and unplanned)

— Resource utilization

— Resource availability

— Staffing level

— Effectiveness and usability of processes and procedures

= People will usually cooperate if you try to make their
jobs more efficient

» But they will resist if you find ways to blame them

Copyright 2022, Dennis J. Frailey Software Quality and Testing

76

Ut D

Resource Measures
Testing Progress

Measuring testing progress helps us predict schedule.

50
40
30

Tested 20

Copyright 2022, Dennis J. Frailey

Units Tested

— Plan
-=— Actual

—— Makeup Plan

— Projection

5 6 7 8 9 10 11 12 13

Wee
Today Deadline

Software Quality and Testing

77

Ut D

The Metric Should Not Be the Goal!

Suppose your goals are
- Good (effective) testing
- Efficient testing

Good uses for a testing progress metric:

— Identify problems in testing and use the information to find
and fix the underlying problems

= Perhaps the test code isn’t very good
= Or perhaps there are equipment problems

= Or perhaps you incorrectly estimated the difficulty of testing
your software product

Potentially bad uses for a testing progress metric:
— Criticizing people for not meeting the deadline
— Rewards for the most tests done per week

Copyright 2022, Dennis J. Frailey Software Quality and Testing

78

UT D Using Testing Progress Metrics Improperly
Wrong Performance Goals

= Real goal: good, efficient testing

= Performance goal for testing team:

- more tests complete per week

= Potential consequences:

- Team makes tests simpler (and less effective) so they can
get more tests done per week

— Team focuses on testing quickly instead of testing
thoroughly and effectively

— Team creates smaller test cases rather than what makes sense

Time is wasted improving the numbers
instead of improving the testing

Copyright 2022, Dennis J. Frailey Software Quality and Testing

79

ut D Using Testing Progress Metrics Improperly
Measuring Individual Performance

If you measure testing progress for individuals you
might encourage people to ...

- Run the easiest and least effective tests in order to get
more tests complete per week

— Cut corners (skip parts of the testing process) when doing
testing in order to get more tests done each week

— Use tools in ways that mask inefficiency
= Making it appear they have done more than they actually have

— Test only the least complex parts of the software

And you might reward the wrong people — the ones who run the most
tests, not the ones who do the most effective testing.

Copyright 2022, Dennis J. Frailey Software Quality and Testing 80

Using Testing Progress Metrics Properly

= Use the Test Progress metric as an indicator of your
true situation

— If there’s a problem, fix the problem o m

- Don’t > j
= pretend it isn’t there | \E I |
= encourage people to cover it up W

= blame people

= Focus on the test processes and procedures
— Are your tests being developed properly?
— Are your tests being run properly?
— Are you properly estimating the time required for testing?

= Enlist the aid of the software team to analyze the
problems and make improvements

Copyright 2022, Dennis J. Frailey Software Quality and Testing

81

UT D

Seeding and Tagging
A simple and effective way to
assess Testing Progress

Copyright 2022, Dennis J. Frailey Software Quality and Testing

82

UT D Seeding and Tagging

Purpose: To help you estimate how many undetected
errors (defects) are in your code

When to do this: During test planning and during the
testing process

Suppose: You have been testing your code and have
discovered D, errors (defects).

Question: How many errors are left?
Technique: Seeding and Tagging

Concept: Introduce extra errors and see how many of
them your test process has found.

Copyright 2022, Dennis J. Frailey Software Quality and Testing 83

Ut D Overview

1. Inject extra errors
before testing starts

2. See how many of those errors you find during
the normal testing process

Copyright 2022, Dennis J. Frailey Software Quality and Testing

84

urt D Seeding and Tagging Detalils

= Introduce a given nhumber of extra errors into the
software -- say E of them

= Run standard tests, detecting D, of them
= Compute D,/E = % of errors detected

= Suppose D, = number of genuine errors
already detected

= Then you assume the total number of errors in the
software is

(_D*E/D,)

Copyright 2022, Dennis J. Frailey Software Quality and Testing

85

ur b Example of Seeding and Tagging

200 defects found so far

You have injected 20 extra defects

You have found 12 of these extra defects

Therefore, assume total defects =
200 * 20 / 12 = 4000 / 12 = 333 total defects

=> 333 - 200 = 133 defects remaining

g By performing this analysis from time to time,

you can estimate your defect density and your
testing progress over time.

Copyright 2022, Dennis J. Frailey Software Quality and Testing

86

UT D
UT Dallas

Software Quality and Software Testing

Part 2 - Achieving Software Quality

Copyright 2022, Dennis J. Frailey Software Quality and Testing

87

UT D Part 2 - Outline

>Introduction

= Six Sigma Overview
= Value Added Analysis Overview
= Cost of Quality Analysis Overview

Copyright 2022, Dennis J. Frailey Software Quality and Testing

88

BEP) Quality Emcompasses Many Characteristics

(i

= = fepdbagk CONSUMEr S§ =
o § 5 g3 BSSUNANGE B 1 Qe S
dtrintes —==""" B = &3 Gustumep — dUI‘EIhI|Il
production dESIgn“PB“”'FEE % u = L 'ﬁal-c ="
E defects E & co huuekrl
. Equarantee= ua g
i 2 1 & . T 15 nromise
ﬂﬂmpllﬂﬂlgﬂ E E saﬂ Epmgsurmﬁeﬂ I?halrg:tewshcs Eﬁ mlenﬁu . finessforpurpose o — I‘UdUGtS

Bngineering & | h ” P chm[:e
suﬂ';'::z"; ::ﬁ:mg?‘! userdriendly & pe Ia I I u mﬁﬁ!‘ n.lve!lﬁ;gpremmﬁmsmmsr I

siment =
- jﬁmus VﬂllIE SatISfﬂﬂt WO oy p;gfﬂgﬂss

pignt 720 defects e

dwaras

Copyright 2022, Dennis J. Frailey Software Quality and Testing 89

i) There are Many Well Established Techniques
for Defining, Improving, Measuring, Testing,

Predicting and

Copyright 2022, Dennis J. Frailey

Man

ging Quality
:f

Software ity and Testing

90

Sl I The Good News

Most techniques for improving quality apply to
multiple quality characteristics

> For example, reducing rework tends to / A truly effective \

" Reduce defects, reliability program
= Improve reliability, Yy Prog

= Reduce development costs should be
EVEIoP - integrated with a

= Reduce likelihood of doing harm, truly

= Reduce maintenance costs, and comprehensive

= Improve customer satistaction. quality engineering
> Defect containment also enables you to \ program. /
= Predict reliability, warranty cost, etc.
= Identify the process steps that produce the worst defects

= Identify development practices that help or hurt reliability and quality

Copyright 2022, Dennis J. Frailey Software Quality and Testing 9 1

UT D The Bad News

Failure to apply a comprehensive quality
improvement approach may result in quality
problems, even in “"perfect” software.

> A “perfect” software product may have these
quality problems:

* The customer doesn’t like it

= Hard to use

= Not compatible with other software or systems
= Difficult to maintain

= Satisfies requirements but doesn’t actually solve the
customer’s problem very effectively

Copyright 2022, Dennis J. Frailey Software Quality and Testing 9 2

urt b Example from IBM1

= Approximately one out of three defects will only
cause a user failure once in 500 years.

= A very small portion of defects (<2%) cause the
most important user failures

4)
Number of defects may not be strongly

correlated to the frequency or severity

of end user failures.
_ y,

1 See Adams in reference list.

Copyright 2022, Dennis J. Frailey Software Quality and Testing

ur b Issues on Real Projects That Have
Resulted in More Comprehensive
Quality Engineering Approaches

= What is needed for some products is often

not needed for others
- You need to know what the customer requires

= Those doing the work must believe the goal is realistic

— Otherwise, they see it as pushing them to perform beyond their
capacity for marginal benefit

= Many of the problems have to do with management
decisions or corporate culture

— You can’t expect technical experts to solve the problems alone
— they need support and commitments

Copyright 2022, Dennis J. Frailey Software Quality and Testing

94

—L How Good Do You Have to Be?

How Many Products or Services Must Be Defect Free?

= 990/
— This would mean 1 error per 100 course slides which is probably
fairly typical
— But --- 200,000 wrong drug prescriptions per year - very bad
= 99,9906

— 1 spelling error per page in a book or student paper — fairly good
— But 500 surgical errors per week — not acceptable

= 99.999%
— 2000 mail delivery errors per hour

[In other words, it depends on the product or service!]

Copyright 2022, Dennis J. Frailey Software Quality and Testing 9 5

Ut D

Average product vs worst case product

What About Variance?

Which product is better?

Product Average Worst Case
A 2 defects 45 defects
B 3 defects 7 defects

r

.

Many methods of improving quality and reliability
focus on average rather than worst case scenarios.

~N

J

Copyright 2022, Dennis J. Frailey

Software Quality and Testing

96

ur D Other Limitations of
Many Quality Improvement Programs

= No insight into the nature of the problems?

- We may measure or predict failure rates but learn little about the
causes of the failures or how to cure them

= Little consensus on what to do

— Although different quality and reliability experts have recommended
ways to improve

= they may not be aligned or compatible

= there is usually no overall conceptual framework or comprehensive
theoretical model

= How do you justify the costs?

- How do you balance costs and benefits

Copyright 2022, Dennis J. Frailey Software Quality and Testing

97

UT D Part 2 - Outline

= ITntroduction

»>SIix Sigma Overview

= Value Added Analysis Overview
= Cost of Quality Analysis Overview

Copyright 2022, Dennis J. Frailey Software Quality and Testing

98

e Six Sigma Origins

Six Sigma is a comprehensive and integrated set of tools
and techniques introduced by Motorola Corporation in the
mid-1980’s
= Goal:
- Improve quality

("33 BICHA)
B |

= Methods: 1985 Bill Smi coins 1987 Motorola trademarks
- Integrate many different methods eSSt
- Define a uniform way of measuring quality
- Remove the causes of defects, and

- Minimize variability in product development and business
processes

Six sigma incorporates the best ideas of Juran, Deming, Croshy
and other quality experts into a comprehensive approach.

Copyright 2022, Dennis J. Frailey Software Quality and Testing 99

— Six Sigma is a Comprehensive Program

= Six Sigma requires commitment from the entire
organization, especially top management

- Management must be willing to change culture and
processes to achieve higher quality

- Management must support the effort, even when it means
missing deadlines or raising development cost

= Six Sigma focuses on measurement and analysis of
process characteristics that impact quality

— Reliance on verifiable data rather than assumptions and
guesswork

= Six Sigma reduces process variation in order to
achieve stable and predictable results

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 00

Ut D

The Origin of the Term "Six Sigma”

It refers to the normal distribution curve
and the standard deviation (a measure of variance)

AT

q=068%

I\

f)=—fe™

/,{

g=99.9997%
i

\

o2

N\

/ Six sigma attempts to \

provide a quality
Improvement approach that
Is achievable and where
you can have a good
sense of how much you

' flo

ﬂﬁ

éiﬁag

Copyright 2022, Dennis J. Frailey

\ have achieved. /

Software Quality and Testing 1 0 1

Six Sigma Principles

Product Quality Depends on Three Things
1) The design of the product

2) The materials used to construct it

3) The process used to produce it
- Is It a good process”?
- Do we follow the process correctly?

p
(@puts) [3) Production

1) Design Process
2) Materials

(Outputs)
Products

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 0 2

UT D Six Sigma Principles

To Improve Quality You Must Address
All Three Factors

Improve the
Design

p
aputs) [3) Production

1) Design
2) Materials _ Process

Products

Improve the] Improve theJ

Make sure we follow
Materials Process

the Process properly

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 0 3

U D Six Sigma Principles
Some Key Elements of

Six Sigma Programs

= You use a process to produce something

= The process can vary as well as the product
- So you must measure and control process variance

= Average number of defects is not an acceptable
measure ...

— You need to understand the worst case and why it happens

- You need to measure and control the worst case (not
just the average number of defects)

— You also need to control variations from day to day,
resulting from incidental factors that are often ignored

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 04

uTt D Applying to Software

= Software development produces what is essentially a
design!
- “Manufacturing” of software is a relatively small contributor to
quality or reliability problems

= So the three factors become:

— Inputs:
1) The architecture of the system, of which software is a part
= And also the architecture of the software
2) The requirements of the software

— Process:
3) The software development process

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 0 5

Ut D Software Quality Depends on:

1) The architecture of the system or product
2) The requirements of the software

3) The process used to develop the software
- Is it a good process?
- Do we follow it correctly?

(Outputs)
Software

p
anputs) | 3) Development

—_—
1) Architecture Process
2) Requirements_

Copyright 2022, Dennis J. Frailey Software Quality and Testing

106

UuT D Achieving 6 Sigma Quality

(for a manufactured product)

(Inputs)

1) Design
2) Materials

-

-

3) Production
Process

~

J

(Outputs)
Products

1) Design the product for quality and producibility
— this includes improving the design process

2) Improve the quality of the materials

3) Design the production process to produce
quality products

- And follow that process correctly

Copyright 2022, Dennis J. Frailey

Software Quality and Testing

107

UT D
Achieving 6 Sigma Quality for Software

4)
reuts) |3) Development| utputs)
1) Architecture Process Software
2) Requirements|{_ y

1) Architect the system and the software correctly but
with emphasis on ease of development and
maintenance

2) Improve the quality of the requirements

3) Design the development process to produce quality
software

— And follow that process correctly when developing software

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 08

UT D Part 2 - Outline

= Introduction
= Six Sigma Overview

>»Value Added Analysis Overview
= Cost of Quality Analysis Overview

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 09

UT D .
Defining Value VIA:;F'}!

HoWLD; You. Deﬁn; It?
Correctly defining value is the first step of
customer satisfaction

What Really Matters to the Customer?

Tasks or features that do not directly or indirectly
contribute to value are not desirable:

They add cost and risk but do not provide appropriate benefits

Copyright 2022, Dennis J. Frailey Software Quality and Testing
110

Ut D Dimensions of Customer Value
(and how we achieve them)

Benefit

= Low Costs / High Benefit

— Product development or
manufacturing efficiency

— Attractive price

= High Quality
— Customer satisfaction
— Reliability & few defects

= Short Cycle Time
— Rapid product development
— Rapid response to orders

RAFID APPLICATION DEVELOPMENT

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 1 1

2l The Goal

Improve all components of the
customer value triangle

Customer
Value

Quality

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 1 2

—— Conventional Thinking

4)

You Can
Have Any
Two of

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 1 3

L Conventional Thinking ...

You can improve any one at the expense of the others

High
Quality and
Low Cost, but Slow

High Quality,
but Slow and Costly

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 1 4

UT D -
Modern Thinking

... Yyou can improve all together

Satisfactory
Value

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 1 5

Ut D

How Can We Improve All Three?

By Changing Process & Culture

/

How we do it Why we do it

What we do

"

©

(5
Y

(e O

N\

@
Tl

o ok (2 A

.
?

.-

Copyright 2022, Dennis J. Frailey

116

Ut D

Value-Added Analysis

By focusing on
Where we Add Value,
we can
Reduce Cost,
Reduce Defects, and
Reduce Time

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 1 7

Ut D

The Value Stream

Consider the sequence of steps that

add value for the customer

Get
Requirements

Design the
Architecture

Design the
Details

Implement
the Design

Ship to the
Customer

= These are known as the value-added steps

= The complete sequence is called the value stream

Copyright 2022, Dennis J. Frailey

Software Quality and Testing

118

Ut D

The Non—-Value-Added Steps

The other things we do to produce the product

Get
Requirements

Design the
Architecture

Design the
Details

Implement
the Design

Ship to the
Customer

S N A N

Correcting
Errors

Correcting
Errors

Correcting
Errors

Correcting
Errors

Project Management

Quality Assurance

Training

Etc., etc.

Copyright 2022, Dennis J. Frailey

Software Quality and Testing

\

J

S

=__Softwa re

Development

Software
Development
Support
Functions

119

Ut D And Another Perspective

ADDING VALUE
IDLING

WAITING
R et
MOVING
Dealing
INSP, with
CONTROL DEFECTS
ERRORS

Scondanibbio.com

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 20

L [What Are the Costs of
Software Development?

« Total Costs >

Essential Non Essential

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 2 1

UT D
Value-Added Costs

Costs for supplies and tasks performed ...
— Materials (e.g., paper, software)
— Labor hours (salaries, benefits)
— Capital equipment (workstations, facilities)

... that produce value
— Products
— Customer satisfaction

— Future labor that will not be expended
» For example, reduced maintenance and repair

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 2 2

UT D The Strict Definition of
“Value-Added”

Any activity that is part of the development process is
considered a value-added activity if it meets three criteria:

" 1) Must change the product in some way

2) Must make the product more desirable to the
customer (i.e., the customer wants the change)

 3) Must be done right the first time

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 23

—L The Strict Definition

= This very strict definition helps us open our minds

= So we identify the proper targets for process
improvement.

= Anything that is not value-added is a suitable target
for removal or improvement.

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 24

UT D
Things Not Part of Value-Added -

= Features the software engineer thinks are nice but
the customer doesn’t care about

= Moving a product around

= Translating between incompatible tools

= Repairing mistakes

= Tests and inspections

= Most management activities

= Activities unrelated to the development process

= Many other things we tend to think of as "necessary”
or “desirable”

» And some of them are necessary!

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 25

UT D Some Non-Value-Added Activities
Must be Done

= Management
Quality Assurance
= Testing

May be worthwhile
= even though they
do not add value

(The term “value-added" is used to help us open our minds as

we improve our processes.

It does not mean that the above tasks are not worthwhile
or that the people who do them are not important.

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 26

UT D Such Tasks are Called
“"Non-Value-Added Essential” Tasks

Tasks performed because the process of developing
software is not perfectly efficient

— Peer reviews
— Evaluations, inspections, verification and validation (testing)
— Data collection, storage and analysis

— Extra reviews and verifications required by customer or
company policy (usually because of past problems)

— Certain overhead costs (employee benefits, support activities)

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 27

UT D
Why are These Tasks Essential?

= They might not be necessary in a perfect world

= But they are necessary with our current methods
of product development

— and our current level of product development knowledge

(.
Every process has some essential,
non-value-added elements

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 28

UTt D i
Non-Value-Added, Not Essential -

Tasks that are not value-added and that are
not essential

Typically, these are tasks that we perform because our
processes are inefficient or error prone

» Examples:
— Things we do wrong because we are careless

— Things we do wrong because we don’t know how to do
them correctly

— Things we have always done but no longer need to do

- Things that once made sense but don’t any more due to
newer technologies or changes in the organization or
environment

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 29

Ut D Examples of Non-Value-Added, Not
Essential Tasks

— Excessive paperwork or approvals
- Rework - doing it over again because we did it wrong the first time

- Waits for equipment repairs, networks, test equipment, approvals,
etc.

— Debugging because we did a sloppy job of design or coding

— Costs resulting from bugs or other deficiencies in our software
development tools

— Costs for activities unrelated to the development process

These tasks should be eliminated or streamlined first,
as they add cost and risk for no useful purpose

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 30

UT D Non-Value-Added Tasks are Often
Hard to See

Defects
Rework Scrap
Visible Ovarnins |\ spection

Equipment Failures

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 3 1

Ut D : i
Some Costs are Especially Painful -

Tasks not performed during software development
(or not performed at the right time or in the right
way) that cause high costs later on

— Failure related costs h
— Debugging & Correcting defects
- Maintenance and repair
— Dealing with unhappy customers

High costs we
= could have
avoided

= These can subtract value:
— Loss of customer good will
— Future labor that must be expended

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 3 2

Ut D

Typical Value-Added Categories

Value-Added

Non-Value-Added (costs $, no value to customer)

1) Customer Wants

2) Changes Product - - '
3) Done Right th Essential Non-Essential
First Time !
- Design + Set-Up * Extra * Rework
- Development * Training paper."work » Service
. Fabrication * Planning * Waits * Modification
. Assembly requuried test . Bo’r‘rle.necks . Recall
. p * Moving Data | * Counting . Correction
rocess .
, Between Steps | . Installing . Retest
* Creation :
* Many Quality | Software Tools | g.... Analysis
' Upgrqde Improvement | . Extra Un-
* Shipping activities wanted
Features

Copyright 2022, Dennis J. Frailey

Software Quality and Testing

133

Ut D

Value-Added

Example:
Result of Value Added Analysis

Non-Value-Added (costs $, no value to customer)

1) Customer Wants

2) Changes Product : - i
3) Done Right th Essential Non-Essential
First Time | B
- Requirements - Estimating |+ Approval by 7 - Debugging
analysis - Training people! - Service calls
- Coding - Customer- systems costs
- Documentation required * Data » Shipping costs
. : acceptance conversion for patches
InTegr'a’rlon. test between design Losz of
. Manuch‘rurmg * Configuration TOO: and coding customer
' Pc:\ckagmg Control T\‘;\; " goodwill
» Shipping . T : * Wait for .
nspections subcontracted ete.
hardware

Copyright 2022, Dennis J. Frailey

Software Quality and Testing

134

D) : :
Typical Result After Cost Analysis

= Value-added -- 35% of total cost
= NVA Essential -- 20%0 of total cost
= NVA Non-essential -- 45% of total cost

> Top three non-value-added items for typical
software projects:

- Rework due to design and coding errors -- 14%
— Extra customer support -- 12%

— Labor costs for individuals waiting for equipment that
is not available -- 11%

Copyright 2022, Dennis J. Frailey Software Quality and Testing
135

UT D Part 2 - Outline

= Introduction
= Six Sigma Overview
= Value Added Analysis Overview

»Cost ot Quality Analysis
Overview

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 3 6

Ut D

The Cost of Quality

(Fewer Defects; Customer satisfaction)

Quality costs money
But improving quality can save money
The issue: how to save more than it costs

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 3 7

L Categorizing Quality-Related Costs

1) Cost of Conformance
— The cost of activities that improve quality
= Prevention Costs - activities that prevent poor quality
= Appraisal Costs - activities that detect poor quality
— So you can fix the product right away

2) Cost of Non-Conformance

- The price of failure to achieve quality
= Internal Failures - Costs before product shipment
= External Failures - Costs after product shipment

Recommended Quality Strategy:
Invest in conformance to save in nhon-conformance

Copyright 2022, Dennis J. Frailey Software Quality and Testing

138

-0 Example

= If you test the software first, before shipping, and catch a
bug before shipping, then the bug might cost you very little:

— Cost to test the software
— Cost to debug the software
— Cost to repair 1 copy of the software

= If you develop the software without much testing, and ship
to 1000 customers, then a bug might cost you a lot:

— Cost to debug the software
— Cost to repair 1000 copies of the software
— Costs associated with product failure

- Loss of good will and trust by many customers
= They may buy the next product from someone else

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 39

Ut D

Categorizing Quality-Related Costs

Quality Related

Costs
Cost of Cost of Non-
Conformance Conformance
/\
Prevention || Appraisal Failure
Costs Costs Costs
/\
Internal External

Copyright 2022, Dennis J. Frailey

Software Quality and Testing

140

Ut D

Effects of Process Maturity on Costs

Cost as a Percent of

Copyright 2022, Dennis J. Frailey

Development Cost

60

50

40

30

20
10

Total COQ
External
Failures
~_. o
In'[e.r'na <. S \
Failures ~ N
~
~. S
~—
~~ ~_ ;\é
4

2 3
SET CMM Maturity Level

[As reported by Knox (see references)]

Software Quality and Testing

141

Ut D

Non Cost of Quality

Net Cost of a Process
Categorizing Tasks & Subtasks

Cost of Quality (all non-value-added)

Copyright 2022, Dennis J. Frailey

Software Quality and Testing

Value Non- Cost of Cost of Non
Value- Conformance Conformance
Added Added | Prevention| Appraisal Failure
* Design * Over- » Training * Inspection |+ Rework
 Development | é‘f'f‘ois + Planning |- Testing |- Service
» Fabrication | . Tneff- | Simulation| - Audits » Modification
* Documentation icien- * Modeling |+ Monitoring | « Expediting
* Assembly cies » Consulting | * Measure- |+ Recall
* Process - Qualifying| Mment - Correction
» Creation + Certifying | *Verification] . Retest
* Upgrade * Analysis * Error Analysis
» Shipping

142

UT D

End of Part 2

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 43

UT D
UT Dallas

Software Quality and Software Testing

Part 3 - Defect Containment

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 44

S} Defect Containment (Phase Containment)

This requires that you collect additional information
about each defect you discover during an inspection
or as a result of a test:

- In what phase of development was the defect created?

Defects Phase Containment / Leakage
(High Severity Defects - Priority 1, 2 &3)

- In what phase was it detected?

Life Cycle Phase Discovered

Legacy| 6.7%

Requirements | 15.0%

Design| 15.0%
Code and Unit Test| 63.3%

Integration Test| 0.0%
Test
After Test

pajeursuQ eseyd 91949 ajr

Insights.sei.cmu.edu

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 45

ut b

Note on Defect Containment

= There are several variations on this method

= All use the same basic data (base measures) but they use
the data in different ways

o

4 In this lecture we will illustrate

one of the variations on this
method.
You may find others at
www.sei.cmu.edu

~

Copyright 2022, Dennis J. Frailey Software Quality and Testing

146

urt b Example of Defect Containment

= Suppose you detect a lot of defects during system test

= And suppose you discover that most of them occurred due
to bad design procedures

= Then you know that the best way to fix the problem is to
improve your design procedures

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 47

—L In-Phase Defects

In-phase defects are those that are corrected in the
same development phase where they were introduced

- Example: a coding error that is caught and corrected
while you are writing the code, before going to system test

> Measuring in-phase defects tells you which parts of
your process generate large numbers of defects

In-phase defects are generally the
least costly to correct.

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 48

b Out-of-Phase (Leaking) Defects

Out-of-phase defects are those that are detected (and
corrected) after they leave the phase where they
were introduced

- Example: a design error caught during unit test

» Measuring out-of-phase defects indicates how often
vyou allow defects to “leak” from the phase where
they originate

— this is a predictor of post-release failures .
Finding the

- and also a good help in root cause analysis Ultimate Cause
of a Defect

(Ou’r-of-phase defects are generally
the most costly to correct.

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 49

Ut D Defect Containment Analysis
Step 1 - Collect the Data

Track Each Defect and Record Phase of Origin

Defect Report
SEET R /Some of this\

Description information
may not be

Phase where found determined

Phase where introduced ____ until you

have
. debugged
Priofity ___Type ___ the software
Estimated Costto Fix /

etc. 7

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 50

UTt D Defect Containment Analysis

Step 2 - Record and Display the Data

Defect Containment Matrix — Sequential Process

Phase
where
Defect
was
Detected

Copyright 2022, Dennis J. Frailey

Phase where Defect was Inserted

POST
RA | PD | DD |C&T| I&T | REL.
a This h
RA| 15 shows the
data at
12 | 55
Fb the end of
op| 42 | 8 | 23 / the C&T
ce7l 15| 3 | 8 | 17 \ Phase
I&T
POST
REL.

Software Quality and Testing

151

Ut D Defect Containment Analysis
Step 2 - Record and Display the Data

Defect Containment Matrix — SCRUM Process

Scrum where Defect was Inserted

POST
S1 S2 S3 S4 S5 REL.
4 This N
S1| 15 shows the
Scrum data at
where | S2| 12| % the end of
Dv(\eliz;esct s3| 42 | 8 23 / the 4th
Detected | s4a| 15 | 3 8 | 17 G SCRUM)
S5
POST
REL.

Copyright 2022, Dennis J. Frailey Software Quality and Testing

152

UT D Defect Containment Analysis Step 3 -

Using the Data

If you see many out-of-phase defects in a specific cell,
you can narrow down the source of defects

Phase
where

Defect was
Detected

Copyright 2022, Dennis J. Frailey

Phase where Defect was Inserted

POST

L 17 ‘

A lot of defects are created
during preliminary design

Software Quality and Testing

A lot of defects originate during requirements
analysis but are not detected until detailed design

153

Ut D Defect Containment Analysis Step 4 -
Using the Data to Provide
Additional Insight
Over time, you can correlate
= the number of defects in the matrix

= to the number of failures found by the customer

» You can use this to predict and ultimately to
manage the number of failures

[A method for doing this will be shown briefly in today’s]
lecture

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 54

UT D Observations on This Method

1. Definition of a defect must be adhered to in a
consistent way across the project and, preferably,
across all projects in an organization

- Some projects may resist defining defects the same way as
other projects.

2. As shown, there is no distinction by type or
severity of defect

— But this distinction can also be made if the original data are
good enough)

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 5 5

A Key Lesson Learned from Measuring
Defect Containment

If you detect and correct defects early, it greatly
reduces cost and reduces post-release failures (i.e.,

those seen by the customer)
60

|
50 . mmmmsm Requirements -

e Design
s Code

=
(=]

Cost Impact
(%]
(]

]
o

—y
(=]

— —

Requirements Design Code

(=]

Test
Defect Detection/Correction Phase

Dau.dodlive.mil

> But this requires very good understanding of
requirements and of customer “care-abouts”

Copyright 2022, Dennis J. Frailey Software Quality and Testing

156

UT D Contained and Leaking Defects

Phase of Injection

RA |[PD DD |C&UT|IAT |Post Rel

RA 15
“ § In-phase or Contained
58y [12 [55 [LLneeseor Contaned
£5/DD 22| 8 | 23
a N

C&UT 15| 3 8 17

T&T \[.

Post Rel Out-of-phase or Leaking]

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 5 7

Sheet1

				RA		PD		DD		C&UT		I&T		Post Rel

		RA		15

		PD		12		55

		DD		22		8		23

		C&UT		15		3		8		17

		I&T

		Post Rel

Sheet2

		

Sheet3

		

Ut D Large Numbers Indicate
Software Development Process Problems

= Large numbers in any column indicate that your
development process is generating many defects in

that process phase

= A large number in a “leaking” cell means you are
also paying a lot of money for rework

" This tells you where to focus
process improvement efforts

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 58

Ut D

A Typical Defect Containment Chart

Phase Originated

Phase RA PD DD CUT [&T SYSINT [POST REL| tot
Detected
RA 730 73
PD 158 481 63
DD 19 2 501 52
CUT 15 0 12 63 N
[&T 25 4 35 321 9 39
SYS INT 4 0 7 19 4 2 3¢
POST REL 48 2 0 36 0 0 67 15

totall 999 489 355 439 13 2 67 25¢

Copyright 2022, Dennis J. Frailey

Least Costly Defects are on the Diagonal

Software Quality and Testing

These defects are "Contained” within the step where they were caused

159

Ut D

Escaping Defects are Those

Not Detected until After Release

Phase

Originated
Phase RA PD DD CuUT I&T |SYS INT| POST | total
Detected REL
RA 730 730
PD 158 481 639
DD 19 2 501 522
CuT 15 0 12 63 90
I&T 25 4 35 321 9 394
SYS INT 4 0 7 19 4 2 36
POST 153
REL

total] 999 489 555 439 13 2 67 2564

Escaping Defects Cost the Most of All

Copyright 2022, Dennis J. Frailey

Software Quality and Testing

160

		

		Phase Originated

		

		

		

		

		

		

		

		Phase Detected

		RA

		PD

		DD

		CUT

		I&T

		SYS INT

		POST REL

		total

		RA

		730

		

		

		

		

		

		

		730

		PD

		158

		481

		

		

		

		

		

		639

		DD

		19

		2

		501

		

		

		

		

		522

		CUT

		15

		0

		12

		63

		

		

		

		90

		I&T

		25

		4

		35

		321

		9

		

		

		394

		SYS INT

		4

		0

		7

		19

		4

		2

		

		36

		POST REL

		48

		2

		0

		36

		0

		0

		67

		153

		total

		999

		489

		555

		439

		13

		2

		67

		2564

UT D Other Uses of
Defect Containment Data

There are many uses of defect containment

Calculating total repair cost

T
- By recording labor cost to repair defects 2
» Calculating rework cost _—
— Reduction in rework can be compared with —
cost of prevention activities I
» Organizational-level analysis

ljser.org

= Prediction of defects and warranty costs NS

= Prediction of reliability r— P

Product Cirestorner
Performance Expectation

Sciencedirect.com

Copyright 2022, Dennis J. Frailey Software Quality and Testing

161

Ut D

Defect Repair Cost '~

Labor Cost to Repair Defects

Phase of Injection

Copyright 2022, Dennis J. Frailey

RA |PD |DD |CAUT|IAT |Post Rel
L |RA 31 Cell ij indicates the
°2 PD $12 | $2
9o ge abor cost
£3|0b 22| $8 | %2 to repair a defect
CAUT | $45| $18 | $8 | $2 created in phase i and
LaT detected in phase |
phase j
Post Rel . /

Software Quality and Testing 1 6 2

Sheet1

				RA		PD		DD		C&UT		I&T		Post Rel

		RA		$1

		PD		$12		$2

		DD		$22		$8		$2

		C&UT		$45		$18		$8		$2

		I&T

		Post Rel

Sheet2

		

Sheet3

		

Ut D

If you multiply the defect containment chart by the
“labor cost to repair” chart, you get total repair cost

Defect
Counts

Copyright 2022, Dennis J. Frailey

Total Repair Cost

03¢

Cell-wise
multiplication

Cost to
Repair

Software Quality and Testing

Total
Repair Cost

163

Ut D

Phase of

Detection

Phase of Injection

Total Repair Cost Example J.

RA |[PD |DD [C&UT|I&T |Post Rel
RA $15
PD $144 | $110
DD $484 | $64 | $46
CAUT | s675 | $54 | $64 | $34
T&T
Post Rel

Copyright 2022, Dennis J. Frailey

Software Quality and Testing

\ detected in phase j /

Cell i,j indicates the \

bor' cost

to repair all defects

created in phase i and

164

Sheet1

				RA		PD		DD		C&UT		I&T		Post Rel

		RA		$15

		PD		$144		$110

		DD		$484		$64		$46

		C&UT		$675		$54		$64		$34

		I&T

		Post Rel

Sheet2

		

Sheet3

		

Ut D Rework Costs Are
The Portion Of the Prior Chart |" . —
That Are Not On The Diagonal

Phase of Injection
RA |[PD |DD |CA&UT|I&T |Post Rel
RA $15
% S
v =|PD $144 | $110
)
.8‘3 DD $484 | $64 | $46
a A
CAUT | $675 | 454 | $64 | $34
I&T N
Post Rel [Costs off-diagonal are rework costs]

Copyright 2022, Dennis J. Frailey

Software Quality and Testing

165

Sheet1

				RA		PD		DD		C&UT		I&T		Post Rel

		RA		$15

		PD		$144		$110

		DD		$484		$64		$46

		C&UT		$675		$54		$64		$34

		I&T

		Post Rel

Sheet2

		

Sheet3

		

Ell B This Concept Applies
Throughout the Product Lifetime | -~ —

You can track repair cost and rework cost

during development &
and S
after delivery to the customer ——

= You can further break defects down by characteristics:
— Phase of Development where Defect Occurred
- Severity
- Importance to Customer
— Cost to Repair
— Time to Repair \I
- Which Part of the Software was Responsible
- Etc.

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 66

Imgkid.com

L[D This Can Help You Justify
Process Improvements e T

Rework costs are the equivalent of “"software scrap”

= If you can reduce scrap by investing in defect
prevention activities, you can save a lot of money
(see earlier slides)

= If you make an improvement in your development
process, you can use the defect containment chart to
show the savings in reduced repair cost

= And you can use the chart to determine which parts
of the process are most important to improve

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 67

ur b Analyzing Defect Data at the
Organizational Level

= By collecting data from many projects, we can show
historical costs for rework

= And we can also show patterns of defect containment

Organization
Data

Project
A Data

Project Project
C Data | '™ N Data

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 68

ur b Organizational Analysis of Defect
Containment Data

Analysis of defect containment data for many projects
over a period of time
may show such organizational information as:

— Most frequent types of defects

— Most costly defects

— Time required to fix defects

— Process steps generating the most defects

— Which design standards help or hurt defects

~\
g Typically we collect the data needed for

statistical process control:
kaverages, ranges, distributions, maximum, minimum, etc.)

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 69

Ut D

Example: Determining an

Organizational Process Metric

Defect
Data
from

SA/SD

Projects

Copyright 2022, Dennis J. Frailey

|

SA/SD Defect Pattern

!

Defect T T T T
Data |

from OO ﬂ

Projects

OO Defect Pattern

Software Quality and Testing 1 70

UT D
UT Dallas

Software Quality and Software Testing

Part 4 - Measuring Software Complexity

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 7 1

Sl) Contents

Complexity: what and how to measure

Structured Programs and Flowgraph Analysis

Measures of Complexity

Closing Remarks

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 7 2

ur b Contents

» Complexity: what and how to measure

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 7 3

Ut D Complexity

We tend to think that complex software is
more difficult to develop, test and maintain
and has greater quality problems.

But what do we mean by complexity? == .
Dictionary definitions of complex: e S/
1. Composed of many interconnected parts S _
2. Characterized by a very complicated
arrangement of parts

3. So complicated or intricate as to be hard to
understand

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 74

urt D Complex vs Complicated

Complicated: being difficult to understand but with time
and effort, ultimately knowable

Complex: having many interactions between a large
number of component entities.

— As the number of entities increases, the number of interactions
between them will increase exponentially

— It can get to a point where it would be impossible to know and
understand all of them.

Hotel-r.net

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 7 5

Ut D Changing Complex Software

= Higher levels of complexity in software increase the risk of
unintentionally interfering with interactions and so increase
the chance of introducing defects when making changes.

Bronck OFfice Corpordte Hmdcbuaf'rers -Et.ﬁ_innql Oftce
i e — "
P R

el i ,f_ N ot \/é_\ ! - o
B+] THea i e

ia To

Switchad LArk

& .
' —— =
o R
Mobite Users Telecommuters
& Pleld Sales & Remste Users

Labs.Sogeti.com

= In more extreme cases, complexity can make modifying the
software virtually impossible. Changes introduce more
problems than they fix. This is called inherent instability.

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 7 6

Ut D Can We Measure Complexity?

Measures of complexity would need to address:
— the parts of the software,
— the interconnections between the parts,
— and the interactions between the parts.

Information Need
— Something that will help us estimate
— difficulty of programming,
— difficulty of testing and maintaining,
— expected level of quality

— Something that will help us evaluate and
improve our software with regard to the above
characteristics

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 7 7

Ut D How Can We Measure Complexity?

The base measures
would quantify the
attributes of:

— The parts or

components of the
software

- How many parts or
components there are

- The arrangement of
the parts

— The interactions of
the parts

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 78

Ut D Compound Measures

Combining the base measures into calculations that help
us address our information needs, answering questions
such as:

— What aspects of software structure can help forecast
development effort and quality?

- Is my software structure good-?
- How should I test my software??
- How can I improve my software structure?

- How much has it improved-

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 79

Ut D What Can We Measure?

We might learn something about the structure and
complexity of software by measuring:

- Requirements
= Models, use cases, test cases

— Architecture and Design
= Models, design patterns, structure, control flow, data flow

- The code itself
= Statements, variables, nesting, control flow, data flow

— The way the code is assembled to produce the final product
= Load files, use of libraries

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 80

UT D

One Problem Is That There are
Many Systems for Describing

Software Structure

"[ﬂ

UML Model Diagram Windows 7 Ul Booch 0OD COM and CLE Data Flow Model
Diagram

Q 5“\. = !'f. ﬁ ﬁ : ' Il' m J

Enterprise Jacochson Use Case Jackson Program Flowchart Pregram Structure
Application

-)i @ - e _

s sy = = |

\ B =

. . E3 = -
Massi-Shneiderman ROOM Shlaer-Mellor 004 S5AD0M Yourdon and Coad
Copyright 2022, Dennis J. Frailey Software Quality and Testing

181

UT D Generally Speaking We Measure
Complexity of Systems and of
Components that Make up Systems

We usually start with the architecture of the system

EP:ES-UTIVE
MODEL - -
a This is the \

W 0;,\ <. architecture of a

i o . Rt sYstem defined
using structured
char -
eyl o n&\ analysis. There are
ihe notaton Q\: complexity
lor & decision GET CHAR. enar PUT GHAR. This Is the
L measures for the

system and for the

g e char rec
2 2~ K L) £
— individual
GETRECORD | |EXTRACTGHAR. | | \ioRecomp | | WAITE RECORD \ components /

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 8 2

With Object Oriented Systems, the Nature of
the Components Varies with the Methodology

This means we must sometimes devise
methodology-specific measures

Document %C R l| Ivledia
js-a{l\
|
Structure Publication | Feoiction tps
1'5-&/[\ presertationm i
Tabls || Frame || List |[RefEntry| [&rticke Text | | Sraphus

Senal

Beference

cordaie
Ennk

Figare 1. Dlultirnedia Docurrent Mode] - Object diagram

Copyright 2022, Dennis J. Frailey

Software Quality and Testing

This is the
architecture of a
system defined using
object oriented
methodology. There
are complexity
measures for the
system and for the
individual

~

\ components. /

183

UT D Order of Presentation

We will focus on complexity of structured, procedural
software

— Because this is where most of the research has been focused

- Because the results apply to software in many different
languages

— Because most of the results also apply to object oriented
software

From time to time we will mention how the concepts are
applied to object oriented software

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 84

ur b System Level Complexity

Fundamentally, the complexity of a system depends
on the number of components and the number of

uuuuuuuuuuuuuuuuuuuuu

AAAAA

Customer Customer | | Cuszomer

ABC Ltd ABCLd | ABCLd
waer (|10

nnnnnnnnnnnnnnnnnnnnnnnn

pppppppppppp [Sapety .
1200001111234 | | 1200001111235 1200001111236 | | 1200001111237 | [1200001111238
Site & Site B Site B c c Site © Site D
Inviaices P . - - - ~ PNy
3 SBP 3 £ 580) S| B SEP 8p 8P
B 1 77 12 1 [77] 2 1 [77] 12 1 [77] 12 1 1 1
Primary T ’,___//-- Primary ——
ccccc Billing Group €55 Login
6. Fester | [m ki Lk BPZE @ 0Tap Base Lid
""""""""""""""" 10, Penfold Plaza wrerrn m

It can be further complicated by the degree to which
the components share common elements (coupling)

Copyright 2022, Dennis J. Frailey Software Quality and Testing

185

UT D Contents

» Structured Programs and Flowgraph Analysis

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 86

Ut D Control Flow Captures Major

Complexity-related Attributes

Our intuitive notions of complexity would say that when
there are more parts and more complex ways they
interact, we have more complex software.

® 100505862 o
Sezneerssn _— di_selection
™ edsor . ,,m(:wuwul’ \
\ faefotosmicncsas
® cemngesnaa e A ® 20s0ssean
. g
i T Tpp—
e S oy
® 2z0160ceae \ 01 4 |
v i o fricatbaia |
worseibe OIRS N Bk F——
& sonalbexwndzies hd | -
© canobafBaatamionsic 2012019 oM z0spaczed
A o goreens T L s e
\ g e S ST = e
 pagusy * 2190020068
. 00BYE3 i * 200
R e * oo

*r020um875
i oo Lea7iz
o
eponzdoal SN0
2018€78} 14550700
LT T - * r0ngesasa
A “® cooonod s " ebbatd
. - / i o,
kb 121300 ¥ ke 016670
220 g 200SEEN
* 2200006052 % ® crodidceoh
p P\ foobbd ~® zxio2dbsz
AL oot Y r e
* 2200709402 £ sesoabbess—ts | S
ity 7 =% VA i ae—
\ o \ . ® c206ddidda
i * codyoiipoteamic \ AL Swenrs e s
2200670774 \ * 22000b6e'E ‘\ 2203604145 L
/ /e consennss” SN \
A / % ok \
4 * FORALS, =
@ rraozmosz A lete Sagsosserss
\ ® s20ac21d38
® 12005680/ & canoreros

-{W.m

e TheTwe + wat wn\ ocsun w

[Many measures of complexity make use

Copyright 2022, Dennis J. Frailey

of control flow analysis.]

Software Quality and Testing

187

Ut D Control Flow is Often Modeled with
Directed Graphs

e
F —
[Node -
{ el
11 inv... F
Edge F
[en] >
[This could be flow within a} 35 return]
system or within a module :.T £x

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 88

In Many Notations, the Shape of the Node
Conveys the Nature of What it Represents

For example, flowcharts:

() Terminator Predefined
Process

Process <) Display
/ / Data (file)

Manual Input
Off-page Connector

|

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 89

Connector

Annotation

Ut D Notation To Be Used Here
(in these slides)

= Arc or Edge > A path between nodes
= Procedure Node Sauarich sh
- A block of code. E > quarish shape,
Exactly one arc leaving

Any decisions are
internal to the

block. One exit.

= Predicate Node (E Round shape, Two or

— One that makes a more arcs leaving
decision. s ~

= Start Node or Colors of procedure and
predicate nodes are not part of
the notation.

= Stop Node D Colors are used only to clarify

_ points being made on a slide. Y

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 90

Ut D A FlowGraph

A flowgraph is a directed graph with
- One start node, and
- One end node,

> that has the following property:

— Every other node lies on a path between the start node
and the end node

Notes:
— This notation works for any procedural programming language
— But not all languages can represent all possible flowgraphs

— Certain common language constructs have readily recognized
flowgraph forms

See later slides or Fenton,
page 379 for some examples.

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 9 1

Example: Code, Flowchart, and Flowgraph

Code Flow-Chart Flow-Graph

atatementl atatementl
+

IT expregalonl

atatement? expressionl
elae l_ _l
B Em—S statement? statemant3
atatementd ! T |
e e atatementd e o
gtatemants ‘

—— atatementh

'

while expression

gtatements

— expresalon?

l

atatamanté

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 9 2

Ut D What is a Structured Program?

A structured program is one constructed out of

three fundamental control structures: Sequence
- Sequence (ordered statements and/or subroutines) g1 Firstdost
= Examples: A = B+C; D = FUNC(E,F) Y ~Thendos2
- Selection (one or more statements is executed, vetection |
depending on the state of the system) @,
= Example: If C1 Then <true option> Else <false option> / 3
S1 S2
— Iteration [loop] (a statement or block is executed Loop
until the program has reached a certain state) !
= Examples: While; Repeat; For; Do... Until %,
\?&\e “?@%
S

Copyright 2022, Dennis J. Frailey Software Quality and Testing

193

Ut D

Sequence
i
statement
staterment I
statement statement
staterment !
statement

i 8

condition

staterment

Selection
'I?\ condition 4
W n
slaterment | statemeant siatement sta[emeni
+

Structured Program Notation

Iteration (Loop)

statement

| S—

Blue: NS Diagram notation; Green: Flowchart notation

Sequence

|

S1 e First do S1

}

Sszhen do 52

|

Copyright 2022, Dennis J. Frailey

Selection

Software Quality and Testing

Loop

194

These Three are Sufficient to Represent
Any Program

4 The structured program theorem, also A
known as the Bohm-Jacopini theorem, says
that the class of flowgraphs representing
the three control structures above can
_ compute any computable function Y

> Note: This does not necessarily mean it is the only
way or the best way.

» The theorem simply states that it is possible to
represent any function with only the three control
structures.

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 9 5

Why Are Structured Programs Important?

Studies have shown that limiting the software to a
small number of well defined control structures has
these benefits:

— Easier to understand

— Less error prone

— Easier to analyze and test
— Easier to measure

4)
This started out as a theoretical concept, developed by Edsger Dijkstra and others.

It became more widely known when Dijkstra wrote his famous “Go To Considered

9 Harmful’! letter to the editor of Communications of the ACM (in 1968). y

1 See References

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 9 6

UT D There May Be More Than One Flowgraph
Representing A Particular Kind of Control Structure

Example: Two flowgraphs for selection

True

If A then X
(Do)

False

Copyright 2022, Dennis J. Frailey

(e

ach of these is als

\ slides.

a “"prime"” flowgraph,
meaning it cannot be
reduced to a simpler
form. We'll discuss
this further in later

~

o

/

If Athen Xelse Y
(Dy)

Software Quality and Testing

197

urt b Two Prime Flowgraphs for Iteration

While A Do Repeat X
X Until B
(D) (Ds)

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 98

ut D Prime Flowgraphs and D Notation

= A prime flowgraph is one that cannot be reduced (to a
simpler flowgraph).
- Dy, Dy, D, and D5 are all prime.
— See discussion of “reduction” in later slides.

= The D notation is a widely recognized way of denoting
certain standard, prime flowgraphs.

If A then B
(Do)

_—\

[)
This is a standard type of flowgraph, known as

a D, structured flowgraph.
. J

Copyright 2022, Dennis J. Frailey Software Quality and Testing 1 99

Ut D The Flowgraphs D,-D; (and sequencing)
Can Be Used To Represent Any Program

As a result, some define a program to be "structured”
only if it is represented by a combination of these
flowgraphs.

However, there are several additional prime
flowgraphs that represent commonly used language
constructs and that can greatly simplify some
programs.

So different organizations and researchers have
defined additional prime flowgraphs that may be
permitted in “structured” programs.

[In other words, every organization defines structured in its own way.]

Copyright 2022, Dennis J. Frailey Software Quality and Testing 200

Ut D

Structured Program Flowgraphs:

What Is Common and What Is Not

= What all structured programs have in common
— Definitions of edges, nodes, etc.

— Built out of the three fundamental constructs: sequence,

selection, and iteration

— It must be possible to reduce a program to a combination of a

selected set, S, of prime flowgraphs

= What is Different
- Which prime flowgraphs are included in the set S.

r

.

See Fenton, section 9.2 for a discussion of flowgraphs and
structure and, in particular, section 9.2.1.2 for a generalized
notion of structuredness.

~

Copyright 2022, Dennis J. Frailey Software Quality and Testing

201

Ut D

Copyright 2022, Dennis J. Frailey

An Example of Why
Additional Prime Flowgraphs are Useful

|

IF A or B THEN x]

ELSEY

If only DO and D1 can be used to)
represent this code, then we must use
a D1 within another D1 and must show

X twice.
This is the equivalent of rewriting the

\ source code as shown below. /

(IF A THEN X

ELSE
IF B THEN X
\ ELSE'Y y

~

Software Quality and Testing

X must be A
duplicated. If

Xis a lot of
code this is
inconvenient.j

202

Ut D D Was Introduced To Allow Common
Boolean Selection Decisions

If A then B If Athen B else C If A or B then X If A and B then X
(Do) (D,) else Y else Y
(Ds) (Ds)

Copyright 2022, Dennis J. Frailey Software Quality and Testing 20 3

BB D, Was Introduced to Allow Middle-Exit Loops

While A Repeat X
Do X Until B Do X
(D) (D,) Exit when A
DoY
Repeat
(DJ)

Copyright 2022, Dennis J. Frailey Software Quality and Testing 204

C Flowgraphs are Prime Flowgraphs
for CASE Statements

Copyright 2022, Dennis J. Frailey

Case A of
A X
A, : X

A X,
(C1...n)

4)

Note that there are
an arbitrary number
of these, depending
on n - the number of

ossible selections.
P J

/ Note also that these are classified\
as “C” structured flowgraphs, not
“D” structured flowgraphs, because,
technically, the CASE statement is
not one of the three fundamental

\ control structures. /

Software Quality and Testing

205

UT D L Structured Flowgraphs Represent
Multi-Exit Loops

Copyright 2022, Dennis J. Frailey

True

Do X
Exit when A
DoY
Exit when B
Repeat

(L)

/ A two-exit loop is\
shown (L,). This is
commonly used.

However higher
numbers of exits
could be

represented as wellj

(" Thisalso hasitsown)
classification (L) rather than
being considered a D
flowgraph because it is not
one of the three fundamental

_ control structures. ~ /

Software Quality and Testing

206

B Why Use Flowgraphs to Measure Complexity?

= Directed Graphs clarify the flow of control between
software elements

= Many measures of software complexity can be
determined from directed graphs

= It is fairly easy to represent any program with a
directed graph

- Note that there might be several ways to graph a program, but
they should all have the same measure of complexity if they
are done correctly

Copyright 2022, Dennis J. Frailey Software Quality and Testing 20 7

Ut D Combining Flowgraphs

Flowgraphs with a single entry and single exit can be
combined in the following ways:

= Sequencing: Merging the end node of one flowgraph
with the start node of the other

= Nesting: Replacing an arc in one flowgraph with the
other flowgraph

Flowgraphs can also be reduced or condensed or
decomposed by reversing the above

= For example, collapsing a nested flowgraph into a

single node and arc
— This is, conceptually, the equivalent of replacing the nested
flowgraph with a procedure call

Copyright 2022, Dennis J. Frailey Software Quality and Testing 208

urt D Sequencing Example

Sequence S1

N

D

Sequence S2

Sequence S1 S2
Copyright 2022, Dennis J. Frailey Software Quality and Testing 209

ur D Nesting Example

. B - E—>F
Wl e o e
0 G—H
D calls Procedure P

{procedureP

210

Ut D

Reduction Example 1

D calls
procedure P

Copyright 2022, Dennis J. Frailey

4 Any single-)
entry, single-
exit sub-
graph can be
replaced by a
procedure

_ call)

N

Procedure P

Software Quality and Testing

211

Ut D

Copyright 2022, Dennis J. Frailey

Reduction Example 2

_

Any sequence
containing no
decisions or

reduced to a
single node

~

iterations can be

J

Software Quality and Testing

212

Ut D McCabe Cyclomatic Complexity

The Cyclomatic Complexity (v) of a Module or a System is:

- The number of linearly independent! paths (basis paths)
through the module or system

- If F is a flowgraph?, then v(F) = e -n + 2
= Where e is the number of edges (arcs)
= And n is the number of nodes

— If a system consists of multiple flowgraphs that are not
connected together, the formula becomes:
V(F) =e—-n+ 2c
= Where c is the number of separate flowgraphs?3

1 To be discussed a little later 2 With one entry and one exit
3 In graph theory these are called connected components

Copyright 2022, Dennis J. Frailey Software Quality and Testing 2 1 3

Ut D Examples of Cyclomatic Complexity

= Example 1: @

»V(F) = e-n+2 = 3-4+2 = 1
» There is only 1 path through the code

= Example 2:

>»V((F)= e—-n+ 2
6-5+2

3

» There are 3 possible paths
through the code:

= ABDE
= ABCE
= ACE

Copyright 2022, Dennis J. Frailey Software Quality and Testing 2 1 4

Why Is Cyclomatic Complexity Useful?

= Number of paths indicates maximum number of

separate tests needed to test all paths

— This should relate to the difficulty of testing the program

= It also indicates the number of decision points in

the program (plus 1)

— This should relate to the difficulty of understanding and

testing the program

r

.

Cyclomatic complexity is not a perfect measure of
these things (see Fenton, chapter 9) but it is a fairly
reliable guide.

~\

J

Copyright 2022, Dennis J. Frailey

Software Quality and Testing

215

The Higher the Cyclomatic Complexity, the
Harder the Code Is to Maintain

Cyclomatic Complexity

CC Interpretation Bad Fix Maintenance
Value P Probability* Risk

1-10 E:E:i ljure 5% Minimal

11-20 'More complex | 10% Moderate

21-50 [Complex 20% - 40% High

50-100 |“Untestable™ 40% Very High

=100 Holy Crap! 60% Extremely High

*Bad Fix Probability represents the odds of introducing an error
while maintaining code.

Copyright 2022, Dennis J. Frailey Software Quality and Testing 2 1 6

UT D What Do We Mean by
Linearly Independent Paths?

The number of linearly independent paths is the
minimum number of end-to-end paths required to touch
every path segment at least once.

— Sometimes the actual number of paths needed to cover the system is

less than this because it may be possible to combine several path
segments in one traversal.

There may be more than one set of linearly independent
paths for a given flowgraph

— This becomes more likely as you get more complex flowgraphs

Determining a set of linearly independent paths is

something you might study in a course on testing or in a
course on graph theory

— It gets harder as the cyclomatic complexity goes up

Copyright 2022, Dennis J. Frailey Software Quality and Testing 2 1 7

Ut D A Graph with Five
Connected Components

This graph has five ()

separate regions, 1 D% (})\.
which are connected ('_Y)\ ;

within themselves, C

but not to each other.

Each region is called ?}/ R
a connected q ;%;D
component. C .

The graph above is not a flowgraph by our strict definition,
because it has more than one start and stop node and not all nodes
are connected to any given start or stop node. But it illustrates the
concept of connected components.

Copyright 2022, Dennis J. Frailey Software Quality and Testing 2 1 8

Ur D Why Would We Care About Graphs
with Many Connected Components?

= We could measure the cyclomatic complexity of a
system consisting of several separate modules

= In object oriented systems we could measure the
cyclomatic complexity of a class containing multiple

methods
Surname
Prename Holder
| Adress = Altributes, Number
Profession Properties _ Credit Line
Birthday " | Balance
d Holder of the right
Change of Residence 2 of dispesal
Change of Profession [
~ Methods Deposit
/| Withdrawal
1 | Transfer
Standing Order

Copyright 2022, Dennis J. Frailey Software Quality and Testing 2 1 9

Ut D McCabe Essential Complexity

The Essential Complexity (ev) of a Module or a System is:
— The cyclomatic complexity of the fully reduced flowgraph

- Example:
B—e o

= ev(F) = 1 because this can be reduced to one node

> If the flowgraph is constructed completely of prime
flowgraphs (i.e., it is structured) then the essential
complexity will be 1.

Copyright 2022, Dennis J. Frailey Software Quality and Testing 2 20

Some Issues with Essential Complexity
(slide 1 of 2)

Essential complexity is intended to tell us how well
structured a program is.

However

= As originally defined, the only valid primes were the
four D structured primes: D,, D,;, D,, D;

- So if you allow additional primes, do you revise the definition
of essential complexity to include the new primes?

— Do you allow D, and D¢ but nothing else?

— What about the C structured primes and the L structured
primes?

Copyright 2022, Dennis J. Frailey Software Quality and Testing 2 2 1

Some Issues with Essential Complexity
(slide 2 of 2)

If your program is not "structured” it isn’t clear whether
the essential complexity tells us much beyond that

— Does a larger essential complexity actually mean anything?

— If two programs have the same essential complexity, are they
equally complex?
= See fig. 9.13 in Fenton for an example

= He shows two flowgraphs that have the same essential complexity,
but intuitively one of them is a lot more complex and harder to
understand than the other.

Copyright 2022, Dennis J. Frailey Software Quality and Testing
222

Ut D Contents

» Closing Remarks

Copyright 2022, Dennis J. Frailey Software Quality and Testing 2 23

There is No Single Measure of Complexity

= As we have seen, there are different ways to measure
complexity

= Research shows that sometimes the attributes of
complexity may conflict

— For example
= l[ow coupling doesn’t always mean high cohesion

= l[ow cyclomatic complexity doesn’t always mean easy to
understand

= structured software may be awkward to produce in languages
without certain constructs

4 - - N
Use complexity measures as guidelines, not as

“magic humbers” that result in rigid requirements

L for code.)

Copyright 2022, Dennis J. Frailey Software Quality and Testing 2 24

Ut D

END OF
Part 4

Copyright 2022, Dennis J. Frailey Software Quality and Testing 2 2 5

ur D Any Questions?

Copyright 2022, Dennis J. Frailey Software Quality and Testing 2 26

Ut D

End of
Lecture

Copyright 2022, Dennis J. Frailey Software Quality and Testing 2 27

Ut D

References
Part 1

Bourque, P. and R.E. Fairley, eds., Guide to the Software Engineering
Body of Knowledge, Version 3.0, IEEE Computer Society Press, 2014. ISBN
978-0769551661. Available in PDF format (free) at www.swebok.org.

Crosby, Philip, Quality is Free. New York: McGraw-Hill, 1979. ISBN 0-07-
014512-1.

Fenton, Norman and James Bieman, Software Metrics: A Rigorous and
Practical Approach, Third Edition, Chapman and Hall, 2014. ISBN 978-
1439838228.

Juran, Joseph M., Juran on Quality by Design: The New Steps for Planning
Quality into Goods and Services. Free Press, 1992. ISBN-13: 97/8-
0029166833.

Project Management Institute, SWX - The Software Extension to the
PMBOK Guide Fifth Edition, Project Management Institute, 2013. ISBN 978-
1628250138.

Weinberg, Gerald M., Quality Software Management, Volume 1, Systems
Thinking, Dorset House, New York, 1992. ISBN: 0-932633-22-6.

Copyright 2022, Dennis J. Frailey Software Quality and Testing

228

Ut D

References
Part 2

(1 of 4)

Crosby, Philip B. Quality is Free, New York, McGraw-Hill, 1979.

» Practical guidance on how to reduce cost and improve quality by value-
added analysis

Deming, W. Edwards, Out of the Crisis, MIT Press, 1986, ISBN:
0911379010

» Deming originated most of the ideas in value-added analysis

Eswaramurthi, K. and P. V. Mohanram, "Value and Non-Value
Added (VA/NVA) Activities — Analysis of a Inspection Process — A Case
Study”, International Journal of Engineering Research &
Technoloogy, V 2 #2 (February, 2013).

» An excellent case study applied to manufacturing.

Juran, J. M., Juran on Leadership for Quality: An Executive
Handbook, The Free Press, 1989.

» One of the most frequently cited sources of info on this subject.

Copyright 2022, Dennis J. Frailey Software Quality and Testing

229

Cll B References

Part 2

(2 of 4)

= Knox, Presentation on Raytheon studies, as reported by Houston
and Keats, Software Quality Matters, vol 5, no 1 (Spring, 1997),
U. of Texas SW Quality Institute

» Actual study done in 1993.
= Ketkamon, Kanyakorn and Jirarat Teeravaraprug, “Value and
Non-value Added Analysis of Incoming Order Process,” Proceedings

of the 2009 International Multiconference of Engineers and
Computer Scientists (IMECS 2009), Vol II, Hong Kong

» Applying Six Sigma principles to printed circuit board manufacturing.

= http://www.brighthubpm.com/six-sigma/48826-the-
importance-of-value-added-analysis-in-lean-six-sigma/

> This site discusses how processes are analyzed in “six sigma” programs
to identify what is value-added

Copyright 2022, Dennis J. Frailey Software Quality and Testing

230

Ut D

References
Part 2

(3 of 4)

Abran, A., et. al., "Functional Complexity Measurement”,
Proceedings, IWSM 2001 - International Workshop on
Software Measurement.

Adams, E., "Optimizing preventive service of software products”,
IBMZ J_?lell‘nal of Research and Development, vol 28, no. 1 (1984),
pp. <-14.

Chidamber, S. and Chris Kemerer, A Metrics suite for Object

Oriented Design, MIT Sloan School of Management E53-315 (1993).

Dijkstra, Edsger, "GO TO Considered Harmful”, letter to the editor
of Communications of the ACM, March, 1968.

Fenton, Chapter 9

Henry, S. and D. Kafura, "Software Structure Metrics Based on
Information Flow”, IEEE Transactions on Software Engineering,
Volume SE-7, No. 5 (Sept, 1981), pp 510-518.

Copyright 2022, Dennis J. Frailey Software Quality and Testing

231

Ur D References
Part 2

(4 of 4)

IEEE 9982.2 (1988). IEEE Guide for the Use of IEEE Standard
Dictionary of Measures to Produce Reliable Software, A25. Data of
Information Flow Complexity. P112.

Kitchenham, B. A., "Measuring to Manage”, in Mitchell, Richard J.
(editor), Managing Complexity in Software Engineering, London,
Peter Peregrinus, Ltd. (1990). ISBN 0 86341 171 1

Lavazza, L. and G. Robiolo, “Functional Complexity Measurement:
Proposals and Evaluations”, Proceedings of ICSEA 2011: the Sixth
International Conference on Software Engineering Advances.

Stevens, W., G. Myers and L. Constantine, "Structured Design”, IBM
Systems Journal, vol 13, no 2 (1974), pp 115-139.

Copyright 2022, Dennis J. Frailey Software Quality and Testing 23 2

Ut D

References
Part 3

(1 of 2)

Chatfield, C., Statistics for Technology, A Course in Applied Statistics,
Third Edition, Chapman and Hall, London (1983), ISBN 978-04122534009.

Fenton, Norman and James Bieman, Software Metrics: A Rigorous and
Practical Approach, Third Edition, Chapman and Hall, 2014. ISBN 978-
1439838228, Chapter 6.

Hedstrom, John and Dan Watson, "Developing Software Defect
Prediction,” Proceedings, Sixth International Conference on Applications of
Software Measurement, 1995,

Jones, Capers, Applied Software Measurement, McGraw Hill, 1991. ISBN:
0-07-032813-7.

Knuth, Donald, Seminumerical Algorithms: The Art of Computer
Programming, Vol II, Addison-Wesley, 1969. ASIN: BOO157WFAU

Copyright 2022, Dennis J. Frailey Software Quality and Testing

233

ur D References
Part 3

(2 of 2)

Ott, R.L. and M. T. Longnecker, An Introduction to Statistical Methods
and Data Analysis, 61" Edition, Duxbury Press (2008), ISBN 978-
0495017585.

Snyder, Terry and Ken Shumate, Defect Prevention in Practice (Draft
white paper), Hughes Aircraft Company, October 22, 1993.

Ross, Sheldon M.. Introduction to Probability Models, Academic Press,
1993. Musa, John, Software Reliability Engineering: More Reliable Software,
Faster Development and Testing, McGraw Hill. ISBN: 0-07-913271-5.

Copyright 2022, Dennis J. Frailey Software Quality and Testing 234

Ut D

References
Part 4

(1 of 2)

Abran, A., et. al., "Functional Complexity Measurement”, Proceedings,
IWSM 2001 - International Workshop on Software Measurement.

Chidamber, S. and Chris Kemerer, A Metrics suite for Object Oriented
Design, MIT Sloan School of Management E53-315 (1993).

Fenton, Norman and James Bieman, Software Metrics: A Rigorous and
Practical Approach, Third Edition, Chapman and Hall, 2014. ISBN 978-
1439838228, Chapter 9

Fenton, N. and A. Melton, "Deriving Structurally Based Software
Measures,” Journal of System Software, vol 12 (1990), pp 177-187.

Henry, S. and D. Kafura, "Software Structure Metrics Based on
Information Flow”, IEEE Transactions on Software Engineering, Volume SE-
7, No. 5 (Sept, 1981), pp 510-518.

Copyright 2022, Dennis J. Frailey Software Quality and Testing

235

Ut D

References
Part 4

(2 of 2)

IEEE 9982.2 (1988). IEEE Guide for the Use of IEEE Standard Dictionary
of Measures to Produce Reliable Software, A25. Data of Information Flow
Complexity. P112.

Stevens, W., G. Myers and L. Constantine, "Structured Design”, IBM
Systems Journal, vol 13, no 2 (1974), pp 115-139.

Kitchenham, B. A., "Measuring to Manage”, in Mitchell, Richard J]. (editor),
Managing Complexity in Software Engineering, London, Peter Peregrinus,
Ltd. (1990). ISBN 0 86341 171 1

Lavazza, L. and G. Robiolo, "Functional Complexity Measurement:
Proposals and Evaluations”, Proceedings of ICSEA 2011: the Sixth
International Conference on Software Engineering Advances.

Copyright 2022, Dennis J. Frailey Software Quality and Testing

236

	UT Dallas ��Software Quality and Software Testing��Part 1 – The Big Picture (How Quality Relates to Testing)�Part 2 –Achieving Software Quality�Part 3 - Defect Containment�Part 4 – Measuring Software Complexity�
	UT Dallas ��Software Quality and Software Testing��Part 1 – The Big Picture (How Quality Relates to Testing)�Part 2 –Achieving Software Quality�Part 3 - Defect Containment�Part 4 – Measuring Software Complexity�
	Dennis J. Frailey�Retired Principal Fellow - Raytheon Company
	A Recommended Book on Measurement
	More Recommended References
	Part 1��The Big Picture��How Quality Relates to Testing�and�Other Aspects of Software Engineering��
	Part 1 - Outline
	My Story
	My First Really Big and Difficult Computing Problem Marine Seismic Exploration
	Characteristics of the Situation
	Consequences of a Software Failure�Phase 1 – Getting to the Ship
	Consequences of a Software Failure�Phase 2 – On the Ship
	Consequences of a Software Failure�Phase 3 – Getting Off the Ship
	In Other Words
	Real Projects for Real Customers
	Projects are Often Big & Complex
	Characteristics of Big Projects
	Many Organizations Claim to Develop High Quality, Reliable Software
	What Do We Mean When We Talk About “High Quality Software”?
	Measurement is Often Involved in How We Test or Evaluate Software
	But What Are We Testing or Evaluating?�What is “Desired Behavior”?
	Test and Evaluation
	Slide Number 23
	SWEBOK Facts
	The 15 SWEBOK Knowledge Areas
	Software Requirements
	Software Design
	Software Construction
	Software Testing
	Software Configuration Management
	Software Engineering Management
	Software Quality
	Part 1 - Outline
	What Do We Mean by Quality?
	Concepts of Quality for Products
	“Quality is�Conformance to Requirements”
	Issues with �“Conformance to Requirements” (1 of 5)
	Issues with�“Conformance to Requirements” (2 of 5)
	Issues with�“Conformance to Requirements” (3 of 5)
	Issues with�“Conformance to Requirements” (4 of 5)
	Issues with�“Conformance to Requirements” (5 of 5)
	“Quality is �Fitness for Intended Use”
	Issues with�“Fitness for Intended Use” (1 of 4)
	Issues with�“Fitness for Intended Use” (2 of 4)
	Issues with�“Fitness for Intended Use” (3 of 4)
	Issues with�“Fitness for Intended Use” (4 of 4)
	“Quality is�Value to Someone”
	Issues with “Value to Someone” (1 of 4)
	Issues with “Value to Someone” (2 of 4)
	Issues with “Value to Someone” (3 of 4)
	Issues with “Value to Someone” (4 of 4)
	Definitions of Software Quality
	Summary of Quality Definition Issues
	Part 1 - Outline
	Test and Evaluation
	Testability
	Testing is unsuitable when ...
	Evaluation Techniques �(other than testing)
	The Steps Involved in a�Good Testing Process
	Test Preparation Activities
	Reasons why Requirements/Designs�May be Hard to Test
	Suggestions (slide 1 of 3)
	Suggestions (slide 2 of 3)
	Suggestions (slide 3 of 3)
	Other Traceability Options
	Reasons Why Code May Be Difficult to Test
	Sample Outline of a Test Plan
	Sample List of Test Cases
	Test Execution Activities
	Repair Activities
	��Measuring the Progress of a Testing Activity��
	�Testing Requires Resources
	Some of the Things We Wish to Know About Testing Resources
	Resource Measures are Important for�Managing a Project
	Resource Measures Often Measure People
	Measure Processes, Not People
	Resource Measures�Testing Progress
	The Metric Should Not Be the Goal!
	Using Testing Progress Metrics Improperly�Wrong Performance Goals
	Using Testing Progress Metrics Improperly�Measuring Individual Performance
	Using Testing Progress Metrics Properly
	�Seeding and Tagging�A simple and effective way to assess Testing Progress��
	Seeding and Tagging
	Overview
	Seeding and Tagging Details
	Example of Seeding and Tagging
	UT Dallas ��Software Quality and Software Testing��Part 1 – The Big Picture (How Quality Relates to Testing)�Part 2 – Achieving Software Quality�Part 3 - Defect Containment�Part 4 – Measuring Software Complexity�
	Part 2 - Outline
	Quality Emcompasses Many Characteristics
	There are Many Well Established Techniques for Defining, Improving, Measuring, Testing, Predicting and Managing Quality
	The Good News
	The Bad News
	Example from IBM1
	Issues on Real Projects That Have Resulted in More Comprehensive Quality Engineering Approaches
	How Good Do You Have to Be?
	What About Variance?
	Other Limitations of�Many Quality Improvement Programs
	Part 2 - Outline
	Six Sigma Origins
	Six Sigma is a Comprehensive Program
	The Origin of the Term “Six Sigma”
	Six Sigma Principles�Product Quality Depends on Three Things
	Six Sigma Principles�To Improve Quality You Must Address �All Three Factors
	Six Sigma Principles �Some Key Elements of �Six Sigma Programs
	Applying to Software
	Software Quality Depends on:
	Achieving 6 Sigma Quality�(for a manufactured product)
	Achieving 6 Sigma Quality for Software
	Part 2 - Outline
	Defining Value
	Dimensions of Customer Value�(and how we achieve them)
	The Goal
	Conventional Thinking
	Conventional Thinking ...
	Modern Thinking
	How Can We Improve All Three?
	Value-Added Analysis
	The Value Stream
	The Non–Value-Added Steps
	And Another Perspective
	What Are the Costs of Software Development?
	Value-Added Costs
	The Strict Definition of�“Value-Added”
	The Strict Definition
	Things Not Part of Value-Added
	Some Non-Value-Added Activities Must be Done
	Such Tasks are Called �“Non-Value-Added Essential” Tasks
	Why are These Tasks Essential?
	Non-Value-Added, Not Essential
	Examples of Non-Value-Added, Not Essential Tasks
	Non-Value-Added Tasks are Often Hard to See
	Some Costs are Especially Painful
	Typical Value-Added Categories
	Example: �Result of Value Added Analysis
	Typical Result After Cost Analysis
	Part 2 - Outline
	The Cost of Quality
	Categorizing Quality-Related Costs
	Example
	Categorizing Quality-Related Costs
	Effects of Process Maturity on Costs
	Net Cost of a Process�Categorizing Tasks & Subtasks
	�End of Part 2
	UT Dallas ��Software Quality and Software Testing��Part 1 – The Big Picture (How Quality Relates to Testing)�Part 2 –Achieving Software Quality�Part 3 - Defect Containment�Part 4 – Measuring Software Complexity�
	Defect Containment (Phase Containment)
	Note on Defect Containment
	Example of Defect Containment
	In-Phase Defects
	Out-of-Phase (Leaking) Defects
	Defect Containment Analysis�Step 1 – Collect the Data
	Defect Containment Analysis�Step 2 – Record and Display the Data
	Defect Containment Analysis�Step 2 – Record and Display the Data
	Defect Containment Analysis Step 3 - Using the Data
	Defect Containment Analysis Step 4 - Using the Data to Provide �Additional Insight
	Observations on This Method
	A Key Lesson Learned from Measuring Defect Containment
	Contained and Leaking Defects
	Large Numbers Indicate�Software Development Process Problems
	A Typical Defect Containment Chart
	Escaping Defects are Those�Not Detected until After Release
	Other Uses of�Defect Containment Data
	Defect Repair Cost
	Total Repair Cost
	Total Repair Cost Example
	Rework Costs Are �The Portion Of the Prior Chart�That Are Not On The Diagonal
	This Concept Applies�Throughout the Product Lifetime
	This Can Help You Justify�Process Improvements
	Analyzing Defect Data at the Organizational Level
	Organizational Analysis of Defect Containment Data
	Example: Determining an Organizational Process Metric
	UT Dallas ��Software Quality and Software Testing��Part 1 – The Big Picture (How Quality Relates to Testing)�Part 2 –Achieving Software Quality�Part 3 - Defect Containment�Part 4 – Measuring Software Complexity�
	Contents
	Contents
	Complexity
	Complex vs Complicated
	Changing Complex Software
	Can We Measure Complexity?
	How Can We Measure Complexity?
	Compound Measures
	What Can We Measure?
	One Problem Is That There are Many Systems for Describing Software Structure
	Generally Speaking We Measure Complexity of Systems and of Components that Make up Systems
	With Object Oriented Systems, the Nature of the Components Varies with the Methodology
	Order of Presentation
	System Level Complexity
	Contents
	Control Flow Captures Major Complexity-related Attributes
	Control Flow is Often Modeled with Directed Graphs
	In Many Notations, the Shape of the Node Conveys the Nature of What it Represents
	Notation To Be Used Here�(in these slides)
	A FlowGraph
	Example: Code, Flowchart, and Flowgraph
	What is a Structured Program?
	Structured Program Notation
	These Three are Sufficient to Represent Any Program
	Why Are Structured Programs Important?
	There May Be More Than One Flowgraph Representing A Particular Kind of Control Structure
	Two Prime Flowgraphs for Iteration
	Prime Flowgraphs and D Notation
	The Flowgraphs D0-D3 (and sequencing) Can Be Used To Represent Any Program
	Structured Program Flowgraphs: What Is Common and What Is Not
	An Example of Why�Additional Prime Flowgraphs are Useful
	D5 Was Introduced To Allow Common Boolean Selection Decisions
	D4 Was Introduced to Allow Middle-Exit Loops
	C Flowgraphs are Prime Flowgraphs for CASE Statements
	L Structured Flowgraphs Represent Multi-Exit Loops
	Why Use Flowgraphs to Measure Complexity?
	Combining Flowgraphs
	Sequencing Example
	Nesting Example
	Reduction Example 1
	Reduction Example 2
	McCabe Cyclomatic Complexity
	Examples of Cyclomatic Complexity
	Why Is Cyclomatic Complexity Useful?
	The Higher the Cyclomatic Complexity, the Harder the Code Is to Maintain
	What Do We Mean by�Linearly Independent Paths?
	A Graph with Five Connected Components
	Why Would We Care About Graphs with Many Connected Components?
	McCabe Essential Complexity
	Some Issues with Essential Complexity�(slide 1 of 2)
	Some Issues with Essential Complexity�(slide 2 of 2)
	Contents
	There is No Single Measure of Complexity
	Slide Number 225
	Any Questions?
	Slide Number 227
	References�Part 1
	References�Part 2�(1 of 4)
	References�Part 2�(2 of 4)
	References�Part 2 �(3 of 4)
	References�Part 2�(4 of 4)
	References�Part 3�(1 of 2)
	References�Part 3�(2 of 2)
	References�Part 4�(1 of 2)
	References�Part 4�(2 of 2)

